今科教学仪器厂家主要生产IC厌氧反应器实验装置、A20城市污水处理模拟装置、MBBR实验装置等排水处理实验装置,操作简单,性能稳定,质量可靠,价格公道,欢迎来电咨询。
IC厌氧反应器结构及其优缺点!
1、IC反应器的内部图解
厌氧内循环反应器简称IC反应器,是基于UASB反应器颗粒化和三相分离器的概念而改进的新型反应器,可看成是由两个UASB反应器的单元相互重叠而成。它的特点是在一个高的反应器内将沼气的分离分成两个阶段。底部一个处于端的高负荷,上部一个处于低负荷。其基本构造如图所示。
1-进水; 2-集气罩 3-沼气提升管和回流部分;4-气液分离器 ;5-沼气导管; 6-回流管;7-集气罩;8-集气管;9-沉淀区;10-出水管;11-气封。
IC反应器的构造特点是具有很大的高径比,一般可达到4-8,高度可达16-25m,从外观看,象一个厌氧生化反应塔。IE反应器从功能上讲由四个不同的功能部分组成:
1、混合区:由反应器的底部进入的污水与颗粒污泥和内部气体循环所带回的出水有效地混合,使进水得到有效地稀释和均化。
2、污泥膨胀床部分:由包含高浓度的颗粒污泥膨胀床所构成。床的膨胀或流化是由于进水的上升流速、回流和产生的沼气所造成。废水和污泥之间有效地接触使得污泥具有高的活性,可获得高的有机负荷和转化效率。
3、精处理部分:在这一区域内,由于低的污泥负荷率,相对长的水力停留时间和推流的流态特性,产生了有效的后处理。另外由于沼气产生的扰动在精处理部分较低,使得生物可降解COD几乎全部去除。虽然与UASB反应器条件相比,反应器的负荷率较高,但因内部循环流体不经过这一区域,因此在精处理区的上升流速也较低,这两点为固体停留提供了的条件。
4、回流系统:内部的回流是利用气提原理,因为在上部和下层的气室间存在着压力差。回流的比例是由产其量所决定的。
大部分有机物(BOD和COD)是在IC反应器下部的颗粒污泥膨胀床内降解为生物沼气的(甲烷),沼气经由部分分离器收集,通过气体升力携带水和污泥进入气体上升管,至位于IE反应器顶部的液气分离罐进行液气分离,水与污泥经过循环下降管流向反应器底部,形成内循环流。级分离气的出流在第二级(上部)处理区得到后续处理,在此,大部分剩余的可降解的有机物(COD和BOD)得到进一步降解,所产生的沼气被二级分离器收集,出水通过溢流堰流出反应器。
内循环是基于气体上升原理,通过含气体的“上升管”和“下降管”介质密度的差别产生的,在此不需水泵实现这一内循环,内循环量(速度)通过上升管内沼气的含量,即进水中COD浓度的变化实现自我调节。该内循环功能使IE反应器具有较灵活的特点,比如:当进水COD负荷增高时,沼气产量,内循环管内气体上升力,经由下降管至下部的循环水进一步稀释了COD的浓度。反之,当进水COD负荷较小时,较少的沼气产量产生较小的气体上升力,使得较小的循环水流至反应器底部稀释进水COD浓度。由此可见,内循环特点可以保证在进水COD负荷波动的情况下,实现稳定的COD负荷自动调节。
2、IC反应器优缺点
IC反应器的优点主要有以下几点:
(1)容积负荷率高,水力停留时间短。
(2)基建投资省,占地面积小。由于IC反应器的容积负荷率高,故对于处理相同COD总量的废水,其体积仅为普通UASB反应器的30-50%左右,降低了基建投资。同时由于IC反应器具有很大的高径比,所以占地面积特别省,非常适用于一些占地面积紧张的厂矿企业采用。
(3)节省能耗。由于IC反应器是以自身产生的沼气作为提升的动力实现混合液的内循环,不必另设水泵实现强制循环,故可节省能耗。
(4)抗冲击负荷能力强。由于IC反应器实现了内循环,内循环液与进水在反应室充分混合,使原废水中的有害物质得到充分稀释,大大降低了有害程度,从而提高了反应器的耐冲击负荷的能力。
(5)具有缓冲pH值变化的能力。IC反应器可充分利用循环回流的碱度,对pH起缓冲作用,使反应器内的pH值保持稳定,从而节省进水的投碱量,降低运行费用。
(6)出水水质稳定。IC反应器相当于两级 UASB艺处理,下面一个的有机负荷率高,起“粗”处理作用,上面一个有机负荷率低,起“精” 处理作用,故比一般的单级处理的稳定性好,出水水质稳定。
IC反应器存在的缺点为:
经污泥分析表明,IC反应器比UASB反应器内含有的细微颗粒污泥(形成大颗粒污泥的前体)浓度高,加上水力停留时间相对短,高径比大,所以IC反应器的出水中含有更多的细微颗粒污泥,这使后续沉淀处理设备成为必要。
第三代厌氧反应器
第三代反应器在将固体停留时间和水力停留时间相分离的前提下,使固、液两相充分接触,既能保持大量污泥又能使废水和活性污泥之间充分混合、接触,以达到真正的目的。包括:膨胀颗粒污泥床(EGSB)、内循环厌氧反应器(IC)、式污泥床过滤器(UBF)等。
1、膨胀颗粒污泥床反应器(EGSB)
EGSB与UASB反应器的结构相似,不同的是EGSB反应器采用相当高的速度,因此,在EGSB反应器中颗粒污泥处于完全或部分“膨胀化”的状态,即污泥床的体积由于颗粒之间平均距离的增加而扩大。为了提高上升速度,EGSB反应器采用较大的高度与直径比和很大的回流比。
工艺优点
1.在高速上升速度和产气的搅拌作用下,废水与颗粒污泥接触更充分。
2.水力停留时间短,反应器有机负荷和处理效率高,高负荷有利于颗粒长大,高的剪切力有利于形成更光滑和更密实的生物膜。
3.高径比大,占地面积大大缩小。
4.均匀布水,污泥处于膨胀状态,不易产生沟流和死角。
5.三相分离器工作状态和条件稳定。
6.ICOD有机负荷率高,污泥截留能力强。
7.颗粒污泥活性高,沉降性能好,颗粒大,强度较好,处理低浓度有机废水优势明显。
8.适用于中低浓度有机废水的处理。
工艺缺点
1.气温和水温的大幅降低会影响EGSB的运行稳定性。
2.投资相对较大,对废水SS含量要求严格。
3.由于采用高的升流速度运行,运行条件和控制技术要求高。
2、内循环厌氧反应器(IC)
内循环厌氧反应器,是目前世界上效率的厌氧反应器。该反应器集UASB反应器和流化床反应器于一身,利用反应器内所产生沼气的提升力实现发酵料液的内循环。
工艺优点
1.通过内循环自动稀释进水,保证反应室进水浓度的稳定性。
3.运行稳定,抗冲击负荷效果好,容积负荷高,投资成本少。
2.仅需要较短的停留时间,适用于可生化性较好的废水处理。
4.上升流速大,SS不会在反应器内大量积累,可保持污泥较高活性。
工艺缺点
1.在污水可生化性不是太好的情况下,由于水力停留时间较短,去除率远没有UASB高,增加了好氧的负担。
2.由于气体内循环,特别是对进水水质不太稳定的厂,易导致出水水量不稳定,出水水质也相对不稳定,有时可能会出现短暂不出水现象,对后序处理工艺产生影响。
3、式污泥床反应器(UBF)
UBF反应器是有UASB和AF结构的复合式反应器。反应器的下面是高浓度颗粒污泥组成的污泥床,上部是填料及其附着的生物膜组成的滤料层。其突出优势是反应器上部空间所架设的填料,不但在其表面生长微生物,且在其空隙截留悬浮微生物,利用原有的无效容积增加了生物总量,防止生物量的突然洗出,且由于填料的存在,夹带污泥的气泡在上升过程中与之碰撞,加速了污泥与气泡的分离,从而降低了污泥的流失。
污水处理设备之厌氧反应器种类汇总及分析
随着科学的发展,科研的不断深入,许多新技术,新材料,新理念被广泛运用于环境保护行业,使我国环境保护技术得到的长足的发展。废水的厌氧处理技术便是之一,其以运行成本低、节约能源、污泥易于处理等优点在废水处理中正发挥着越来越大的作用。
厌氧反应器也叫厌氧处理工艺,是一种的生物膜处理方法,利用砂等大表面积的物质为载体,厌氧微生物以膜形式结在砂或其它载体的表面,在污水中成流动状态,微生物与污水中的有机物进行接触吸附分解有机物,从而达到处理的目的。
目前厌氧反应器的发展已经历了三代,本期小沼将对这三代具代表性的厌氧反应器及其优劣势进行梳理,望对君从事有机废水、废弃物处理及大中型沼气工程的建设有所帮助!
代厌氧反应器
代反应器以厌氧消化池为代表,废水与厌氧污泥完全混合,属低负荷系统。包括:常规厌氧反应器(CADT)、全混式反应器(CSTR)、厌氧接触消化器(ACP)等。
1、常规厌氧反应器(CADT)
常规厌氧反应器也叫常规沼气池,是一种结构简单、应用广泛的工艺类型。
常规厌氧反应器CADT结构图
该消化器无搅拌装置,原料在其中呈自然沉淀状态,一般分为4层,自上而下依次为浮渣层、上清液层、活性层和沉渣层,其中易于消化、活动旺盛的场所只限活性层,因而效率较低。我国农村较为常见。
2、全混式反应器(CSTR)
全混式消化器是在常规消化器中安装了搅拌装置,使得原料处于完全混合状态,因而,使得活性区域遍布于整个消化区,效率相比于常规消化器明显提高,故又称消化器。该消化器常采用恒温连续投料或半连续投料运行,适用于高浓度及含有大量悬浮固体原料的处理。
搅拌器工作原理
工艺优点
1.原料适应性广。适用于畜禽粪便等各种有机垃圾,城市污水厂污泥稳定化处理及高浓度、高悬浮物、难降解有机废水的处理。
2.消化池具有完全混合的流态,原料与底物接触充分,发酵速率高,容积产气率较高。
3.消化器内温度分布均匀。
4.厌氧消化反应与固液分离在同一个池内实现,结构简单、能耗低、运行管理方便。
5.由于有强制机械搅拌,在高浓度状态可有效控制原料的沉淀、分层以及表层浮渣结壳、气体溢出不畅和短流等问题。
工艺缺点
1.工艺池体体积较大,负荷较低。
2.无法分离水力停留时间和固体停留时间,污泥停留时间等于水力停留时间,反应器内不能累计足够浓度的污泥,不能滞留微生物。
3、厌氧接触消化器(ACP)
厌氧接触工艺反应器是完全混合式的,是在CSTR基础上进行了改进的一种较率的厌氧反应器。反应器排出的混合液先在沉淀池中进行固液分离,污水由沉淀池上部排出,沉淀池下部的污泥被回流至厌氧消化池内。
厌氧接触消化器ACP结构图
工艺优点
1.保证污泥不流失,提高厌氧消化池内污泥浓度。
2.反应器的有机负荷率和处理效率较高。
3.易启动。
4.与普通厌氧消化池相比,水力停留时间大大缩短。
5.适用于SS浓度较高的废水处理,如生活污水和工业废水。
6.耐冲击负荷。
工艺缺点
1.去除率相对较低,增加好氧负担。
2.需污泥回流,固液分离相对困难。
3.出水水质也相对较差,对后序处理工艺产生影响。
关于厌氧反应器的酸化现象与恢复措施
厌氧消化作用失去平衡时会显示出如下“”:①沼气产量下降;②沼气中甲烷含量降低;③消化液VFA增高;④有机物去除率下降;⑤消化液pH值下降;⑥碳酸盐碱度与总碱度之间的差值明显增加;⑦洗出的颗粒污泥颜色变浅没有光泽;⑧反应器出水产生明显异味;⑨ORP(氧化还原电位)值上升等。
1、厌氧反应器酸化的原因
1.厌氧反应器超负荷运行
我们都知道,在运行厌氧反应器的各项工艺控制条件中,污泥负荷是一个非常重要的控制参数。污泥负荷是指单位时间内施加给单位质量厌氧污泥的有机物的量,以kgSCOD/kgVS.d表示。对于某种废水,厌氧污泥具有一个的限制值,当运行的负荷超过该限制值,则意味着超负荷运行。
虽然该限制值从污泥负荷的概念上理解是针对整个厌氧污泥,实际上真正的对象是针对厌氧污泥中的产甲烷菌。超负荷运行,实际上是负荷量超过了厌氧污泥中产甲烷菌的产甲烷能力,而此时的负荷量往往并没有超过厌氧污泥的水解酸化能力。所以出现了反应器的VFA开始累积,浓度不断上升,出水pH值降低,去除效率下降这种污泥酸化现象的发生。
所以,了解厌氧反应器的污泥总量,并以此来维持合理的运行负荷,是预防厌氧反应器出现酸化的重要手段之一。
2.pH值、温度等运行控制条件出现严重偏差
由于厌氧污泥中产甲烷菌对其生存条件的要求比水解酸化菌苛刻的多,所以当反应器的pH值或温度的控制范围出现很大的偏差,会使产甲烷菌的产甲烷能力受到严重影响,而水解酸化菌所受到的影响却远远小于产甲烷菌,其结果同样会导致厌氧反应器发生酸化现象。
3.毒性物质流入
厌氧污泥相比与好氧活性污泥,更容易受到毒性物质的抑制。和上述两点所阐明的一样,事实上更容易受到毒性物质抑制的也是厌氧污泥中的产甲烷菌而非水解酸化菌。当废水中含有某种或多种毒性物质,其浓度还不足以严重抑制厌氧污泥中的水解酸化菌时,产甲烷菌已经受到抑制,污泥酸化现象随之发生。
因此,应对污染源可能存在的毒性抑制物进行排查,并建立污染物排放源和污水站之间的事故排放通报机制,和潜在的毒性物质日常监测机制,是防止此类厌氧反应器酸化事故的有效应对措施。
4.营养盐投加严重不足
对于某些缺乏诸如N、P或其他微量元素的废水,投加足量的营养盐非常必要。因为厌氧污泥中无论是产甲烷菌还是水解酸化菌,都需要这些元素进行新陈代谢以及合成细胞物质。
当废水中的某种或多种营养元素缺乏时,将会严重影响产甲烷菌的活性。这是因为,对厌氧污泥,尤其是厌氧颗粒污泥来说,产甲烷菌位于颗粒污泥的部位,水解酸化菌则包裹在产甲烷菌的,水解酸化菌较产甲烷菌更容易获得这些元素来进行新陈代谢,再加之水解酸化菌的生殖速率又远远高于产甲烷菌,使得废水中原本不足的营养元素被水解酸化菌利用殆尽,而产甲烷菌得不到这些必要的元素进行生命活动,其活性会受到大的抑制。其结果是,反应器的酸化不可避免。
2、“酸化”恢复措施
1.降低负荷
反应器发生“酸化”的主要原因是产甲烷菌被抑制,而厌氧反应器的容积负荷是由污泥负荷决定的,甲烷菌活性降低,直接反映了污泥负荷的下降。所以在发生“酸化”时应及时控制进水,情况严重时应完全停止进水。
2.投加碱度
厌氧反应器“酸化”时,可以向反应器中投加碱度中和过高的VFA来维持pH值的稳定,保证产甲烷菌的生存环境,防止严重“酸化”。NaHCO3、Na2CO3、NaOH、Ca(OH)2等都是常用来调节碱度的化学药剂,虽然投加NaOH或者Ca(OH)2等强碱性物质能够快速提高反应器内的pH值,但是氢氧化物会消耗产甲烷过程中所需的CO2,破坏产甲烷的进行,对产甲烷菌的恢复不利,因此不宜采用NaOH和Ca(OH)2。
3、清水冲
采用清水冲洗的方法因厂而异,如果直接使用生产用水必定造成浪费,所以厂区内必须有大量的循环水。而且循环水的温度必须较高,如果因冲洗导致反应器温度下降,同样会降低产甲烷菌的活性,得不偿失。
4、外循环(好氧出水回流)
好氧系统出水回流具有如下优点:①出水回流可以快速将反应器中积累的挥发酸洗出,保证产甲烷菌的生存环境;②好氧出水COD较低,碱度较高,不会增加反应器的有机负荷;③好氧池中的温度一般在25~30℃左右,比自来水温度高得多,对反应器的罐温不会造成太大的影响;④一般好氧出水中DO较低,不会对反应器中的厌氧微生物造成影响。
5、投加新鲜污泥
“酸化”情况严重时,可以选择投加新鲜污泥,这样可以补充反应器内的甲烷菌数量,弥补反应器内产甲烷菌活性降低的不足。条件允许时,投加新鲜的颗粒污泥,这样可以迅速恢复厌氧反应器的运行,因为颗粒污泥中产甲烷菌活性较其它污泥强得多。但是,市场上颗粒污泥的售价及运费都非常昂贵,在工程上很难让人接受。
今科教学仪器厂家主要生产IC厌氧反应器实验装置、MBR污水处理实验装置、SBR反应器实验装置等排水处理实验装置,服务周到,价格公道,深受广大客户的,欢迎来电咨询。
郑州今科教学仪器有限公司成立于2010年,坐落于中原**-郑州,公司秉承立足中原服务全国的经营理念。是国内从事教学仪器研发、生产、销售和技术服务的国家**企业,是中国高等教育教学仪器和中国职业教育实训设备大研发生产基地之一,随着时代的进步,公司已经着手大力开展基于互联网的虚拟工程教育平台研发,为高校教育提供较丰富的教育装备资源。 我公司得到郑州大学环境学院与西安建筑科技大学工程学院的人才培养及产品的科研开发与生产的技术。 公司的主营平流式汽浮实验装置、板式静电除尘器实验装置、给水排水污水处理、固体废物、大气污染、净化气体、除尘、流体力学、水力学等环境工程实验仪器。每一个产品设计研发都是通过各位在职教授和老师指导完成,专门针对实验实训的要求开发。所以公司可以有足够的能力根据不同的客户定制研发满足客户自身要求的产品。