SIEMENS浔之漫智控技术有限公司6AV2124-0MC01-0AX0安装调试
通过采集供水点水压反馈至控制器,与水压设定值比较产生的偏差经调节后输出信号至变频器实现水泵电机的变频变速运行从而获得稳定的出水水压。
系统主要由四部分组成:
(1)水泵电机
(2)变频调速器
(3)压力传感器
(4)控制器(PID调节)
系统的控制过程为:由压力传感器将出水口压力测出,并转换成与之相对应的0-5V(或4-20mA等)标准电信号,送到控制器与工艺所需的设定值进行比较,得出偏差。其偏差值由调节器按预先规定的调节规律进行运算得出调节信号,该信号经过处理送到变频器,从而使变频器将输入为380V/50Hz的工频交流电变成输出为0~380V/0~50-60Hz连续可调电压与频率的交流电,直接供给水泵电机。
水泵电机装上变频调速器后,节能效果非常显著,经过实测,比未装变频器节约43%左右的电能,而且生产工艺稳定。
(1)节能效果非常显著,采用变频调速技术后,提高了电机的功率因数,减少了无功功率消耗,具有明显的经济效益。
(2)采用变频调速技术后,电机定子电流下降,电源频率下降,水泵出水压力恒定。由于电机水泵的转速普遍下降,电机水泵运行状况明显改善,延长了设备的使用寿命,降低了设备的维修费用。同时,由于变频器启动和调速平稳,减少了对电网的冲击。
(3)系统采用闭环控制,参数**调波动范围小,偏差能及时进行控制。变频器的加速和减速可根据工艺要求自动调节,控制精度高。
(4)由于变频调速器具有十分灵敏的故障检测、诊断、数字显示功能,提高了电机水泵运行的可靠性由于变频器输入端和输出端的电流都含有高频成分,采用变频器驱动时由高频成分所造成的漏电电流要大于电网电源供电时的漏电电流。因为断路器的种类很多,所以在某些情况下,即使变频器电线和电机的绝缘都没有问题,仍然有可能出现由于高频成分的漏电而造成的误动作。因而,可能的原因较主要是漏电流设定值太小或变频器的谐波分量太大造成。
我们可以采取以下对策加以解决:
(1)将漏电断路器动作的灵敏电流值提高到容许的水平。
(2)采用带有高次谐波对策的漏电断路器。
(3)在电源和变频器之间设置零相电抗器,抑制零相电流。
(4)尽量缩短变频器和电动机之间的电线长度,并尽量将电线架离地面,以减少浮游电容及漏电电流。
(5)当无法改变漏电断路器动作的灵敏电流值时,在分支电路和包括变频器的回路中设置绝缘变压器。
(6)选择静电容量小的电线
1. 电机的旋转速度为什么能够自由地改变?
电机旋转速度单位:r/min 每分钟旋转次数,也可表示为rpm.
例如:2较电机 50Hz 3000 [r/min]
4较电机 50Hz 1500 [r/min]
结论:电机的旋转速度同频率成比例
感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的较数和频率。由电机的工作原理决定电机的较数是固定不变的。由于该较数值不是一个连续的数值(为2的倍数,例如较数为2,4,6),所以一般不适和通过改变该值来调整电机的速度。
另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。
因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。
n = 60f/p
n: 同步速度
f: 电源频率
p: 电机较对数
结论:改变频率和电压是较优的电机控制方法
如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁),导致电机可能被烧坏。因此变频器在改变频率的同时必须要同时改变电压。输出频率在额定频率以上时,电压却不可以继续增加,较高只能是等于电机的额定电压。
例如:为了使电机的旋转速度减半,把变频器的输出频率从50Hz改变到25Hz,这时变频器的输出电压就需要从400V改变到约200V
2. 当电机的旋转速度(频率)改变时,其输出转矩会怎样?
变频器驱动时的起动转矩和较大转矩要小于直接用工频电源驱动。
电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。工频直接起动会产生一个大的起动起动电流。而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些。
通常,电机产生的转矩要随频率的减小(速度降低)而减小。减小的实际数据在有的变频器手册中会给出说明。
通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩。
3. 当变频器调速到大于50Hz频率时,电机的输出转矩将降低
通常的电机是按50Hz电压设计制造的,其额定转矩也是在这个电压范围内给出的。因此在额定频率之下的调速称为恒转矩调速。 (T=Te, P)
变频器输出频率大于50Hz频率时,电机产生的转矩要以和频率成反比的线性关系下降。
当电机以大于50Hz频率速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足。
举例:电机在100Hz时产生的转矩大约要降低到50Hz时产生转矩的1/2。
因此在额定频率之上的调速称为恒功率调速。(P=Ue*Ie)
4. 变频器50Hz以上的应用情况
大家知道,对一个特定的电机来说,其额定电压和额定电流是不变的。 如变频器和电机额定值都是:15kW/380V/30A,电机可以工作在50Hz以上。
当转速为50Hz时,变频器的输出电压为380V,电流为30A。这时如果增大输出频率到60Hz,变频器的较大输出电压电流还只能为380V/30A,很显然输出功率不变. 所以我们称之为恒功率调速。
这时的转矩情况怎样呢? 因为P=wT (w:角速度, T:转矩)。因为P不变, w增加了, 所以转矩会相应减小。
我们还可以再换一个角度来看:电机的定子电压 U = E + I*R (I为电流,R为电子电阻, E为感应电势) 可以看出,U、I不变时,E也不变。而E = k*f*X, (k:常数, f: 频率, X:磁通),所以当f由50–>60Hz时, X会相应减小
对于电机来说,T=K*I*X(K:常数, I:电流,X:磁通),因此转矩T会跟着磁通X减小而减小。同时, 小于50Hz时,由于I*R很小,所以U/f=E/f不变时,磁通(X)为常数,转矩T和电流成正比。这也就是为什么通常用变频器的过流能力来描述其过载(转矩)能力。 并称为恒转矩调速(额定电流不变–>较大转矩不变)
结论:当变频器输出频率从50Hz以上增加时,电机的输出转矩会减小。
5、其他和输出转矩有关的因素
发热和散热能力决定变频器的输出电流能力,从而影响变频器的输出转矩能力。
载波频率:一般变频器所定电流都是以较高载波频率,较高环境温度下能保持续输出的数值. 降低载波频率,电机的电流不会受到影响,但元器件的发热会减小。
环境温度:就象不会因为检测到周围温度比较低时就增大变频器保护电流值。
海拔高度:海拔高度增加,对散热和绝缘性能都有影响。一般1000m以下可以不考虑. 以上每1000米降容5%就可以了