基于数值模拟的多楔带轮成形工艺研究
带轮作为一种重要的传动零件, 广泛应用于汽车、农机、水泵以及机床等机械设备传动中。带轮传统加工方法是采用铸、锻毛坯经切削加工而成,特点是浪费材料、生产效率低,产品具有精度低、笨重、转动惯量大等缺点。随着科学技术的发展进步,锻压及旋压技术以其节能节材、生产效率高、产品性能好、合格率高等优点,逐步推广应用到带轮的实际生产中。
带有凸台的多楔带轮的成形采取锻压与旋压相结合的成形工艺,而关于影响复杂结构多楔带轮成形质量的工艺参数,并没有明确的研究结果可以参考,故零件生产多结合有限元模拟和试验分析得到较为合适的参数,并在此基础上进行下一步的优化。根据材料的拉伸系数计算拉伸道次,结合冲压与锻造技术并采用有限元模拟软件DEFORM-3D进行数值模拟,分析成形过程中的应力、应变分布,为锻压成形多楔带轮的实际生产提供参考。
零件结构分析
带有凸台的多楔带轮结构如图1、图2所示,在旋压成形多楔齿之前需经过锻压成形内筒及凸台,其中凸台的成形难度较大。多楔带轮材料为DD13钢,基本力学性能如下:屈服强度为325MPa,密度为7.851g/cm3,弹性模量为205GPa,泊松比为0.29。
pagenumber_ebook=32,pagenumber_book=39
图1 多楔带轮结构图
pagenumber_ebook=32,pagenumber_book=39
图2 多楔带轮三维示意图
锻压成形工艺分析
根据体积不变原理,利用Pro/Engineer对多楔带轮体积进行计算,同时考虑预留加工余量,确定选用厚度为3mm,直径为206mm的板坯进行制坯。根据零件结构特点制定其锻压成形工艺路线:多道次拉深成形内筒→冷锻内筒→成形凸台→成形外圆弧。
内筒的多道次拉深成形工艺参数可查询冲压手册,为尽可能降低板坯减薄程度,设计三道次拉深成形内筒。通过查阅带凸缘拉深系数表并且结合生产实际,设计次拉深系数m1=0.52。由拉深系数计算公式:
pagenumber_ebook=33,pagenumber_book=40
其中,m为拉深系数,d为筒壁直径(mm),D为毛坯直径(mm)。计算得拉深直径为d1=107mm。后两道次拉深系数通过查询冲压手册并结合实际取m2=0.75,m3=0.77。故拉深直径分别为d2=80mm,d3=61.3mm。凹模圆角半径的计算公式如公式2所示:
pagenumber_ebook=33,pagenumber_book=40
其中,t 为坯料厚度(mm),D 为毛坯直径(mm),d为次拉深后筒壁直径(mm)。计算出*1次拉深中凹模圆角半径r1为14mm。由此可确定出后续拉深的凹模圆角半径为:r2=10mm,r3=7mm。由于内筒的成形属于变薄拉深,在经过三道次的拉深成形之后需经过冷镦工步对内筒筒壁增厚,故**道次的拉深高度需大于零件内筒的图纸尺寸,结合实际生产经验**道次拉深高度为h=24mm。
有限元模型建立
利用Pro/Engineer建立工件和各道次模具的三维模型,基于Deform-3D软件对多道次成形过程进行模拟分析,模拟采用“SI”公制单位,实际生产中材料为DD13,模拟选择材料库中与之相近的AISI-1008,坯料设置为塑性体,模具为刚性体,网格数量划分为150000个,并运用局部网格细化技术对坯料中间部分进行网格细化分。根据生产实际将摩擦因数设置为0.12,冲压速度为10mm/s,温度为20℃。图3所示为道次模具结构。
模拟结果分析
pagenumber_ebook=33,pagenumber_book=40
图3 *1道次拉深成形模具图
pagenumber_ebook=33,pagenumber_book=40
图4 至*三道次等效应变分布图
道次至*三道次有限元模拟的等效应变分布如图4所示。由图4(a)可见应变值较大处出现在内筒上下圆角处,即内筒上下圆角处变形程度较大。由于*二道次和*三道次的拉深高度不再变化,只在筒径上发生变化,故内筒的上侧圆角处应力较为集中,如图4(b)和图4(c)所示。*三道次筒径缩小到61.3mm,已近似于零件内筒直径61mm,此时内筒圆角及筒壁处壁厚发生了减薄。有限元模拟过程中未出现刮料、折叠缺陷,成形质量较好。
*四道次冷镦成形内筒。由于**道次的拉深使内筒筒壁及圆角处有所减薄,所以冷镦内筒的目的是增厚内筒筒壁及内筒上侧圆角以保证后续零件的成形质量。冷镦工艺是一种精密塑性成形技术,具有制品的机械性能好、生产率高和材料利用率高,特别适合于大批量生产等优点。由图5等效应变分布图可知,坯料内筒上圆角处应变值较大,因上圆角处圆角半径较大,在上模下压时坯料上圆角处与下模发生刮蹭,故出现应力集中的现象。从成形结果上看内筒筒壁及上侧圆角处金属充填饱满,满足后续加工要求。锻压成形过程中载荷出现在该道次,*四道次载荷图如图6所示,载荷为184吨。
pagenumber_ebook=34,pagenumber_book=41
图5 *四道次等效应变分布图
pagenumber_ebook=34,pagenumber_book=41
图6 *四道次载荷图
*五道次冲压预成形凸台以及轮辐与内筒相接的圆角,*六道次通过局部加载凸台处的上模具将凸台锻造至零件要求壁厚。通过锻造工艺使凸台处近净成形,减少机加工量;同时使金属材料向四周圆角处流动充填,提高产品表面光洁度和产品精度;并且可以改变金属组织,提高金属性能。*五道次至*六道次等效应变分布图如图7所示。成形过程中没有出现刮料、折叠等缺陷,但是从图7(b)可见凸台圆角处未充填饱满,这是由于凸台高度较高,冲压过程中减薄较严重引起的。
pagenumber_ebook=34,pagenumber_book=41
图7 *五道次至*六道次等效应变分布图
工艺优化
为解决成形方案中凸台圆角处充填不饱满的问题,考虑在成形凸台之前增加一道次,在内筒与轮辐之间作圆弧过渡,使坯料在凸台处聚料,后两道次按照成形方案的模具进行模拟。增加在凸台处聚料的道次及成形凸台后一道次的应变分布图如图8、图9所示。从成形结果看,凸台圆角处充填饱满,并且没有缺陷产生,成形效果较好,故该成形方案可以有效地解决凸台处减薄严重的问题。对比各道次等效应变值可以发现,随着道次的增加,材料内累积的应变值越来越大。
pagenumber_ebook=35,pagenumber_book=42
图8 增加道次的等效应变图
pagenumber_ebook=35,pagenumber_book=42
图9 凸台成形等效应变图
后一道次冲压成形外圆弧,该道次是为后续旋压成形轮缘及多楔齿做准备,等效应变图如图10所示。可见内筒上圆角和凸台处的应变值较大。终成形结果图如图11所示,成形效果良好。经过测量各处壁厚均达到后续加工要求。
试验验证
根据模拟分析结果,利用YQK-200型液压机进行试验,得到了合格的样件,多楔带轮锻压试件如图12所示。可以看出凸台部分成形质量较好,试件表面光洁度较高,未出现刮料、叠料等现象,经测量试件各关键部位处壁厚均达到后续加工要求。通过试验验证了该锻压工艺的正确性,可为实际生产提供。
结论
pagenumber_ebook=35,pagenumber_book=42
图10 终成形等效应变分布图
pagenumber_ebook=35,pagenumber_book=42
图11 终模拟结果图
pagenumber_ebook=35,pagenumber_book=42
图12 多楔带轮锻压试件
通过对双凸台多楔带轮锻压工艺方案进行深入分析,将冲压工艺和锻造工艺相结合,采用有限元软件Deform-3D对其成形工艺进行了数值模拟,分析了其成形过程中的应力应变分布,并进行了工艺试验验证,结论如下。
⑴双凸台多楔带轮结构较复杂,为控制内筒的减薄程度,内筒需采用多道次拉深成形,结合材料的拉深系数计算拉深道次,并计算各道次拉深的工艺参数。成形过程中应变主要集中在内筒上下圆角处,有轻微的减薄,后续通过冷镦工艺对筒壁及圆角处进行了有效增厚。
⑵凸台的成形需结合冲压技术和锻造技术,控制金属流动方向和速度,保证其成形质量。并通过工艺优化解决了凸台处壁厚减薄严重的问题。
⑶结合有限元模拟结果,通过试验验证了工艺的可行性,得到了符合要求的锻压件。
楔横轧制导板粘料影响因素分析探究
在楔横轧机上下两个轧辊中间左右位置各设一块导板,用以控制轧件,防止轧件歪斜,保证轧制过程的稳定,并可有效地控制产品的尺寸精度,有利于精密楔横轧工艺的实现,见图1。但在楔横轧制过程中,由于冷导板和热轧件接触产生摩擦力,经常会使轧件的表面材料被刮下粘到导板工作面上,这部分材料有的会掉落,重新粘到工件上,在抛丸时自工件脱落,形成表面坑,见图2,而粘到导板上的材料不掉落时,会在工件表面形成划痕,见图3,这两种情况,轻者影响表面外观,重者造成产品报废。长期以来,导板粘料造成的产品表面坑或表面划痕的废品占全部废品的50%左右,该缺陷一直困扰着我们,为解决此问题,我们进行了大量试验,终使该缺陷得到有效控制。
pagenumber_ebook=35,pagenumber_book=51
图1 楔横轧工作原理图
1-轧辊 2-轧件 3-导板
影响导板粘料的因素
导板工作面粗糙度
导板工作表面越粗糙,与轧件的有效接触面积越小,二者相对运动时,对轧件的压强越大,在接触点的凸峰微切削作用下将轧件表面材料刮下,形成导板粘料,见图4。
pagenumber_ebook=36,pagenumber_book=52
图2 导板粘料坑
pagenumber_ebook=36,pagenumber_book=52
图3 导板粘料划痕
pagenumber_ebook=36,pagenumber_book=52
图4 导板工作面粘料图
导板工作面硬度
导板工作面越软,在轧制时,越容易磨损,使导板表面变粗糙,产生粘料现象。
导板工作面材料
由于导板工作表面直接与热轧件接触,并且承受着很大压力下的切向和轴向的滑动摩擦。因此,如果导板材料高温耐磨性较差时,就容易磨损,磨损后会造成工作面不光滑,轧制时,高温轧件材料会粘到导板上。同时,导板工作面的显微组织晶粒大小对耐磨性和粘料也有影响。
工件温度
工件温度越高,塑性越好,强度越低,越容易被导板刮料。同时,温度高,还容易在工件表面产生氧化皮,氧化皮组织比正常组织疏松,容易脱落,粘到导板上。
导板安装位置
导板上下、左右位置对轧制工艺的稳定,产品质量影响很大。
⑴导板上下位置。
导板上下位置与轧辊的转动方向有关,如图5(a)所示,当轧辊逆时针旋转时,轧件顺时针旋转,轧件容易被左导板工作面的下部和右导板工作面的上部刮伤。所以在轧辊的径向调整好后,应将左导板调整至尽量贴向下轧辊,将右导板调整至贴向上轧辊,如图5(b)导板实线部分。如图6(a)所示,当轧辊顺时针旋转时,轧件逆时针旋转,情况正好相反,左导板应贴向上轧辊,右导板应贴向下轧辊,如图6(b)。
⑵导板左右位置。
pagenumber_ebook=36,pagenumber_book=52
图5 轧辊逆时针旋转时导板上下位置确定图
1-上轧辊 2-下轧辊 3-左导板;4-右导板 5-轧件
pagenumber_ebook=36,pagenumber_book=52
图6 轧辊顺时针旋转时导板上下位置确定图
1-上轧辊 2-下轧辊 3-左导板 4-右导板 5-轧件
1)导板间的距离。两个导板工作面之间的距离Q应为轧件热态直径kd加上一定的间隙δ,见图7,若该间隙δ过大,则容易使轧件左右摆动,产品尺寸精度差,甚至导致中心疏松,若该间隙过小,则不容易落料,甚至被卡住,或者刮料。因此,该间隙既不能过大,也不能过小。
2)工作导板位置。导板的理想状态是轧制中心线(两导板工作面间的中心线)与轧辊中心连线重合,如图8(a),左右导板均不受力,但实际上轧件不是贴近左导板就是贴近右导板,或者来回交替贴左右导板,甚至出现轧件一端贴近一个导板,并不断地变化,贴近的导板就是工作导板,为确保轧制稳定,应尽可能使轧件始终贴近一个导板(即工作导板),这就要求轧制中心线(两导板工作面间的中心线)偏离轧辊中心连线一定距离△,见图8(b)。△越大,贴向右导板的力越大,但过大会加重导板磨损,形成粘料,因此应根据经验及公式合理选择△。
pagenumber_ebook=37,pagenumber_book=53
图7 导板左右位置确定图
pagenumber_ebook=37,pagenumber_book=53
图8 工作导板位置确定图
pagenumber_ebook=37,pagenumber_book=53
图9 导板工作面宽度
导板工作面宽度
如图9所示,导板工作面的宽度(即导板厚度)应确保不与轧辊产生干涉。过宽,轧制时会碰到轧辊;过窄,容易刮料,因此,导板工作面宽度一般按热态轧件小直径kd加一定间隙的经验公式确定。
试验过程
为解决导板粘料问题,在确保导板尺寸精度、导板安装位置准确以及轧件温度合理的前提下,我们做了如下试验。
⑴在导板工作面上镶嵌白钢条。白钢条是高速钢,硬度高、耐磨,正常情况下,可以减少导板粘料,但该材料非常脆,抗冲击能力差,一旦轧件卡住导板就会产生崩裂,安全风险也非常大。
⑵H13组合导板。H13是热作模具钢,具有抗热裂能力,在高温时具有较好的强度和硬度,耐磨性好。为降低导板制作成本,又能提高导板工作表面硬度和耐磨性,我们用45#钢和H13材料做组合导板,H13做导板的工作面,热处理后磨床磨削使用,热处理硬度要求50~55HRC,实际硬度50HRC,该导板并未像想象的那样耐磨,轧制不足一个班,就磨损出深坑,出现了粘料现象,轧制800多件,出现了50多件粘料坑工件。
⑶45#钢导板工作面喷涂热处理。喷涂工艺是近几年兴起的一种硬化零件表面的加工工艺,该工艺制作的导板工作面硬度高,表面粗糙度值小,耐磨,寿命长,使用效果不错,但因为喷涂热处理需要委外加工,加工时间长,成本高,一旦损坏,仍需委外处理,因此,这种导板也不太理想。
⑷滚轮导板。滚轮导板是在导板工作面上安装数个一定长度能滚动的圆柱轮,使轧件和导板之间的滑滚动摩擦变为纯滚动摩擦,降低摩擦力,减少导板工作面的磨损,从而可以减少粘料现象,但由于这种方式是在并不很厚的导板工作面上挖洞,做转轴,安装转轮,转轴很细,承载能力差,一旦卡钢,就会将滚轮轴卡断,应用效果并不十分好。
⑸D322焊条堆焊导板工作面后用手工磨削,见图10。随着工业技术的日益发展,堆焊的应用越来越广泛。已从单纯修复磨损零件工艺,发展成制造具有很高的耐磨、耐热、耐蚀等性能要求的双金属零件的重要手段,堆焊后的导板工作面硬度高达52~62HRC,但该导板使用一两个班后就开始粘料,一直靠人工捅导板(也就是每轧一件,由人工将粘到导板上的材料用铁棒捅下来)的办法缓解导板粘料缺陷。这种靠人工捅导板的方法是不可靠的,一是捅导板的人员不是专职人员,既负责上料、又负责捅导板,在上料期间,导板没人捅,就会粘料;二是粘到导板上的材料有时很结实,很难全部捅下来,剩余部分,仍然会造成工件表面缺陷,因此这种方法是不可靠的。
pagenumber_ebook=38,pagenumber_book=54
图10 手工磨削的导板工作面
⑹D322焊条堆焊导板工作面后磨床磨削,见图11。这种方法与试验5类似,硬度相同,只是对堆焊后的导板工作面用磨床磨削,提高了表面光洁度,表面平滑如镜面,使用30多个班才开始轻微磨损,出现轻微粘料现象,工件表面坑很浅,并未造成产品报废,是一种较为理想的加工方法,不仅延长了导板使用寿命,减少导板粘料,降低废品率,还节约了捅导板的人工成本。
pagenumber_ebook=38,pagenumber_book=54
图11 机器磨削的导板工作面
试验分析
⑴试验1的白钢条硬而脆,只解决了耐磨问题,却未解决抗冲击能力。试验3的喷涂工艺,硬度高,耐磨,也具有抗冲击能力,但制作和维修成本均很高。
⑵试验4由滑滚动摩擦变纯滚动摩擦,摩擦力减小,磨损程度降低,粘料现象减轻,但存在抗冲击能力差,易断轴的缺点,而且制作成本也较高。
⑶试验2和试验6对比:加工工艺都是磨削,但材料不同,其硬度存在较大差异:H13热处理硬度仅达到要求的底限,规范要求硬度50~55HRC,实际硬度48HRC,硬度偏低;堆焊可提高耐磨性与耐蚀性,D322焊条含有Cr、Mo、W、V元素,这些元素使堆焊层具有较好的高温强度,并能在480~650℃时发生二次硬化效应,Cr使材料有很好的抗氧化性能,堆焊冷却速度很快,形成较多的马氏体,马氏体不仅硬度高(堆焊硬度高达52~62HRC),而且具有很高的屈服强度,使堆焊层经受中度的冲击;导板的磨损实际上是粘连磨损,即两个相对滑动的表面在载荷作用下使个别接触点发生焊合,焊合点在滑动时被撕裂,进而发生分离的过程,这种磨损受表面温度、硬度及光洁程度的影响,磨床磨削后的表面光滑,不易粘合。试验2和试验6相比,表面均为磨床磨削,除材料不同,存在晶粒大小差异外,其粗糙度相差无几,但二者耐磨程度相差很多,由此可见,导板粘料不仅与表面粗糙度有关,还与材料、表面加工工艺、表面硬度有关,从这两个试验可以推断,堆焊工艺比直接用模具钢热处理加工的导板表面耐磨。
⑷试验5和试验6对比:二者均为D322焊条堆焊的工作面,表面硬度均在52~62HRC之间,只是磨削方式不同,一个是手工磨削,一个是机器磨削,手工磨削的表面有磨痕,见图10,粗糙度大,易粘料,机器磨削的表面光滑平整无加工痕迹,见图11,耐磨性提高约30倍,粘料现象得到有效控制,由坑造成的废品率减少85%左右。因此,表面粗糙度是磨损和粘料关键因素。
总结
总之,影响导板磨损和粘料的因素,除导板尺寸、安装位置及工件温度外,重要的是导板工作面的材料、加工工艺、组织状况、硬度及粗糙度。归根结底取决于导板工作面的硬度及粗糙度,因此,导板工作面的材料除具有较高的硬度,较小的粗糙度值,还应保证有一定的抗冲击能力。本文试验和生产实践,用D322焊条堆焊后磨床磨削是导板工作面加工的工艺,其硬度控制在55~62HRC,粗糙度Ra不大于1.6μm。
掘进机配件厂讲述掘进机的特点
掘进机配件厂阐述掘进机是矿山上用的一种重要的采煤设备,节省了人力物力。掘进机是一种能够实现截割、装载运输、自行走及喷雾除尘的联合机组。随着回采工作面综合采煤机械化的快速发展,煤矿对巷道掘进速度要求越来越高。为了提高采准巷道的速度,悬臂式掘进机被大力研制并逐步发展完善。
切割头应转动灵活,不得有裂纹或开焊。截齿座严重磨损,影响其强度或内孔变形过大,影响使用时应更换。在更换过程中不得损坏切割体的其它部位。可伸缩切割臂应伸缩灵活、可靠;伸缩距离应符合技术文件要求。更换截齿时应首先保证与原设计的几何位置相同,然后采用预热或保护焊等工艺,保证焊接强度,且齿座应具有互换性。同轴度要求较严的箱体,涨套等应按对角线顺序逐级拧紧螺钉,重要联接螺栓,应按设计要求采用力矩扳手操作。
掘进机配件厂介绍掘进技术仍然会在钻爆破岩掘进、悬臂式掘进机、连续采煤机、掘锚联合机组以及全断面掘进机五个方向持续发展。在全硬岩巷道的掘进中,钻爆破岩掘进在很长一段时间内仍会是一种主要方式,但在一些重要领域,全断面掘进机会逐步取代钻爆破岩掘进;在硬度较低的全岩巷道和半煤岩巷道,悬臂式掘进机会得到大力发展,逐步成为主要的掘进方式;在一些条件时宜的煤巷掘进中,掘进效率较高的连续采煤及和掘锚联合机组将会得到推广应用。
四缸曲轴模具堆焊翻新后寿命提升的研究应用
曲轴锻造模具型腔较为复杂,特别是平衡块不规整有凸起的模具,金属充满型腔的能力越差,容易出现曲柄圆角充不满等产品缺陷,锤锻模为安全起见硬度不敢太高,太高模具容易打裂,模具硬度太低又较易造成平衡块歪斜,给正常的生产带来了严重影响,本文将从模具堆焊翻新方面进行研究,提高模具寿命,降低锻打过程中修磨和模具打裂的风险。
我厂生产用的一种四缸曲轴锻模(图1,受产品结构影响,锻模寿命一直较低。模具的平衡块不平滑,有一个较大的拐角,坯料沿箭头方向的流动受到阻碍,坯料充满型腔的能力较低,特别是在平衡块根部圆角位置较易出现充不满的现象,如图2所示。连杆颈开档和*二连杆颈开档之间成“()”状,如图3所示,锻打过程中坯料沿轴线方向流动,弧状凸起的方向会有非常大的冲击力,较易造成开档位置歪斜(图4)。
pagenumber_ebook=44,pagenumber_book=60
图1 我厂一种四缸曲轴锻模
pagenumber_ebook=44,pagenumber_book=60
图2 平衡块充不满
pagenumber_ebook=44,pagenumber_book=60
图3 连杆颈开档和*二连杆颈开档之间成双括号状
pagenumber_ebook=45,pagenumber_book=61
图4 锻打过程中有非常大的冲击力,造成开档位置歪斜
为了提高材料利用率,提升金属充满型腔的能力,在模具上增加了5个阻力台,阻力台阻挡多余金属向毛边仓位置流动,多余金属沿轴向流动,从而又增加了将开档胀坏的风险。多批次生产中都出现过四个开档位置打塌,轻则多次修磨,重则打歪卡模,更换模具,模具翻新成本远**产品销售利润。
锤锻模工作过程中要受到连续的巨大的冲击力,这就需要模具内部有较高的韧性,表面有较高的强度和耐磨性,为提高模具寿命我们选择某C**37R、C**47R进行试验,此焊丝具有韧性好、红硬性好、耐疲劳的优点,与5CrNiMo锻模材料熔合较好。5CrNiMo成分如表1所示。
试验流程
⑴将模具型腔气刨干净,打磨平滑,不得有裂纹、尖角、倒钩出现。
⑵着色探伤。用着色剂喷涂打磨好的模具型腔,用显影液显影(图5),对模具型腔进行仔细检查,如有裂纹,及时清除。
⑶用三维扫描仪对探伤完毕的模具进行扫描,生成三维模型,对比模具三维造型,生成焊接路径程序,手工进行更改优化。
⑷将模具入电炉预热,预热温度450℃,达到温度后保温,保温时间根据模具厚度30mm/h计算,此次试验模具厚度为450mm,保温15h。
⑸模具堆焊开始时用保温棉将模具四周包裹好,调整好自动焊接设备,编制好堆焊路径程序,在型腔底部1/3的位置使用某637R焊丝打底、上面2/3的位置某647R盖面,焊接过程中电流电压分别控制在600A、34V左右,送丝速度4(ipm×100),逐层堆焊,每焊接完一层,停机,用风镐敲击,清除焊渣,仔细检查焊接质量,如有缺陷,刨掉重新堆焊,焊接过程中要时刻关注模具温度变化,模具温度**350℃要停止堆焊重新入炉加热,焊接完成后检查焊接尺寸,**有足够的加工余量。
⑹回火。模具焊接完成后立即进行保温,保温温度450℃,保温时间6h,缓冷至室温后进行次回火。
次回火,回火温度为580℃,保温时间按模具厚度每25mm/h计算,此次试验模具厚450mm,保温18h。随后进行缓冷,缓冷到150℃左右进行二次回火。
*二次回火温度时间同一次回火,回火完后缓冷,随炉缓冷到200℃以下打开炉门冷却,100℃以下出炉冷却直至室温。
pagenumber_ebook=45,pagenumber_book=61
图5 着色剂喷涂打磨好的模具型腔,用显影液显影
表1 5CrNiMo材料成分表(%)
pagenumber_ebook=45,pagenumber_book=61
然后进行打硬度,在模具工作部位选一个平面,用砂轮机打磨光滑,用锤击式硬度检测装置检测模具硬度(图6),本套试验模具回火后上模硬度为3.06~3.09dB,下模硬度为3.09~3.11dB,符合图纸设计要求。
pagenumber_ebook=46,pagenumber_book=62
图6 锤击式硬度检测装置检测模具硬度
⑺模具加工。加工时行粗铣,选用φ25mm、φ16mm圆鼻刀,随后进行半精加工,选用5度R5mm白钢刀,后进行精加工,选用合金球头铣刀。精铣完后进行抛光打磨,保证模具型腔光滑,无倒钩。加工后的模具如图7所示。
pagenumber_ebook=46,pagenumber_book=62
图7 加工后模具型腔光滑,无倒钩
⑻生产验证。对加工完的四缸曲轴进行生产试验。累计锻打1400件,模具型腔歪斜较轻(图8),局部有轻微裂纹(图9)。气刨后发现连杆颈裂纹深度小于2mm,对整个模具寿命影响较小,再次翻新时可将裂纹去除干净。
pagenumber_ebook=46,pagenumber_book=62
图8 模具型腔歪斜对比
pagenumber_ebook=46,pagenumber_book=62
图9 连杆颈位置有轻微裂纹
结论
以往此套模具锻打200件就会出现主轴颈轴肩打塌,平衡块开档打歪,平均一个班需要磨修2~3次,严重影响生产效率,终也只能锻打500~800件,通过此次焊接材料的更换,模具寿命提升明显,本批共生产1400件,达到历史水平,由此可见选择适合模具基体和生产实际的焊材对提高模具寿命有非常大的作用,焊材的选用必须和模具钢本身有较好的熔合性,回火过程中组织的转变必须和基体保持一致,此项试验的成功对其他曲轴类锻模寿命提升有一定的参考意义。
—— 来源:《锻造与冲压》2020年*5期
河南亚兴精锻股份有限公司创建于2003年,公司位于国家文化名城—郑州市文化路航天商务大厦,生产厂区位于黄河之滨、中原福地的平原新区,占地37.5亩,规划生产车间面积12000平方米。亚兴公司是研发制造、生产销售各种型号矿用刮板运输机配件及各行业所需的精锻件的主要骨干企业和供货商。公司建有现代化生产基地,拥有高、中级技术人员20多名和模具制造、锻造、机加工、热处理、装配等标准化生产单元;拥有**业中的电动螺旋2500吨、1600吨、1000吨压力机和1250kw、750kw、500kw中频感应透热炉三条生产线,台式电阻炉热处理生产线三条,加工中心、数控机床10余台及光电线切割机、数控锯床、钻床、拉床、预处理喷丸机、产品检测仪等设备,年生产能力**万吨。主营产品:各类刮板、E型螺栓、哑铃销、驱动链轮、横梁、齿轮、链条等几十种矿用机械配件、上百种型号,同时还生产加工综合机械锻造配件等。全部产品严格按照国家和行业标准研发设计、生产制造,并荣获郑州市“重质量守信用良好单位”称号等,2004年通过国家矿用产品安全标志检验证书,2009年通过了ISO9001:2000**质量体系认证,2011年国家工商总局颁发了“YX亚兴”注册商标认证。