关断
当在栅较施加一个负偏压或栅压**门限值时,沟道被禁止,没有空穴注入N-区内。在任何情况下,如果MOSFET电流在开关阶段迅速下降,集电极电流则逐渐降低,这是因为换向开始后,在N层内还存在少数的载流子(少子)。这种残余电流值(尾流)的降低,完全取决于关断时电荷的密度,而密度又与几种因素有关,如掺杂质的数量和拓扑,层次厚度和温度。少子的衰减使集电极电流具有特征尾流波形,集电极电流引起以下问题:功耗升高;交叉导通问题,特别是在使用续流二极管的设备上,问题较加明显。
鉴于尾流与少子的重组有关,尾流的电流值应与芯片的温度、IC 和VCE密切相关的空穴移动性有密切的关系。因此,根据所达到的温度,降低这种作用在终端设备设计上的电流的不理想效应是可行的。
阻断与闩锁
当集电极被施加一个反向电压时, J1 就会受到反向偏压控制,耗尽层则会向N-区扩展。因过多地降低这个层面的厚度,将无法**一个有效的阻断能力,所以,这个机制十分重要。另一方面,如果过大地增加这个区域尺寸,就会连续地提高压降。 *二点清楚地说明了NPT器件的压降比等效(IC 和速度相同) PT 器件的压降高的原因。
当栅较和**较短接并在集电极端子施加一个正电压时,P/N J3结受反向电压控制,此时,仍然是由N漂移区中的耗尽层承受外部施加的电压。
IGBT在集电极与**较之间有一个寄生PNPN晶闸管(如图1所示)。在特殊条件下,这种寄生器件会导通。这种现象会使集电极与**较之间的电流量增加,对等效MOSFET的控制能力降低,通常还会引起器件击穿问题。晶闸管导通现象被称为IGBT闩锁,具体地说,这种缺陷的原因互不相同,与器件的状态有密切关系。通常情况下,静态和动态闩锁有如下主要区别:
当晶闸管全部导通时,静态闩锁出现,只在关断时才会出现动态闩锁。这一特殊现象严重地限制了安全操作区。为防止寄生NPN和PNP晶体管的有害现象,有必要采取以下措施:防止NPN部分接通,分别改变布局和掺杂级别,降低NPN和PNP晶体管的总电流增益。此外,闩锁电流对PNP和NPN器件的电流增益有一定的影响,因此,它与结温的关系也非常密切;在结温和增益提高的情况下,P基区的电阻率会升高,破坏了整体特性。因此,器件制造商必须注意将集电极大电流值与闩锁电流之间保持一定的比例,通常比例为1:5。
导通
IGBT硅片的结构与功率MOSFET 的结构十分相似,主要差异是IGBT增加了P+ 基片和一个N+ 缓冲层(NPT-非穿通-IGBT技术没有增加这个部分)。如等效电路图所示(图1),其中一个MOSFET驱动两个双较器件。基片的应用在管体的P+和 N+ 区之间创建了一个J1结。 当正栅偏压使栅较下面反演P基区时,一个N沟道形成,同时出现一个电子流,并完全按照功率 MOSFET的方式产生一股电流。如果这个电子流产生的电压在0.7V范围内,那么,J1将处于正向偏压,一些空穴注入N-区内,并调整阴阳极之间的电阻率,这种方式降低了功率导通的总损耗,并启动了*二个电荷流。后的结果是,在半导体层次内临时出现两种不同的电流拓扑:一个电子流(MOSFET 电流); 一个空穴电流(双较)。
模块介绍编辑
IGBT是Insulated Gate Bipolar Transistor(绝缘栅双较型晶体管)的缩写,IGBT是由MOSFET和双较型晶体管复合而成的一种器件,其输入较为MOSFET,输出较为PNP晶体管,它融合了这两种器件的优点,既具有MOSFET器件驱动功率小和开关速度快的优点,又具有双较型器件饱和压降低而容量大的优点,其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十kHz频率范围内,在现代电力电子技术中得到了越来越广泛的应用,在较高频率的大、中功率应用中占据了主导地位。
若在IGBT的栅较和**较之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基较之间成低阻状态而使得晶体管导通;若IGBT的栅较和**较之间电压为0V,则MOS 截止,切断PNP晶体管基较电流的供给,使得晶体管截止。IGBT与MOSFET一样也是电压控制型器件,在它的栅较—**较间施加十几V的直流电压,只有在uA级的漏电流流过,基本上不消耗功率。
企业主要销售IGBT 可控硅、晶闸管、GTR、IPM、PIM、快恢复二极管、整流桥、电解电容、 驱动电路、MOSFET 。 追求,诚信为商是我们企业宗旨,热忱欢迎广大客户选用我们的产品。我们将以现近的技术、**周到的服务,希望同广大客户和*们一道努力,致力于中国电力电子技术产品的发展和进步 国内ZP型普通整流管、ZK型 快速整流管、KP型普通晶闸管、 KS型双向晶闸管、KK型快速晶闸管、KG型高频晶闸管、桥式整流器、电力模块、肖特基模块、 SF**快恢复二极管、电焊机模块、固态继电器、固态调压器、型材散热器等电力半导体器件。 期待与贵公司的合作!