无处遁形的水中铅----氢化物发生-ICP-AES法测定饮用水中铅
钢研纳克江苏检测技术研究院有限公司
铅会严重影响人体健康,过量的摄入会导致慢性中毒,造成人体肝、肾、大脑损伤,儿童铅中毒较会导致发育迟缓,智力低下等。水为生命之源,饮用水中铅含量**标造成的危害较加严重。根据《GB 5749-2006生活饮用水卫生标准》中规定,铅元素的含量不得**过10 ng/mL。针对生活饮用水中的铅元素测定,本文采用氢化物发生与电感耦合等离子体**光谱仪联用的方法,测定生活饮用水中铅含量。本方法检出限为0.7 ng/mL,测定下限为2.3 ng/mL,适用于生活饮用水中铅元素的检测。
仪器配置
Plasma 2000 电感耦合等离子体**光谱仪
观测方式:轴向观测
进样系统:氢化物发生装置
分光系统:中阶梯光栅与棱镜交叉色散结构,全谱瞬态直读
检测器:大面积背照式CCD芯片,高紫外检出效率,宽动态范围
光源:高效固态射频发生器,小体积高效率
Plasma 2000仪器检测条件
观测方向 雾化器流量
(L/min) 辅助气流量
(L/min) 载气流量
(L/min)
轴向 0.6 0.5 13.5
RF功率
(W) 曝光时间
(s) 进样时间
(s) 氢化物发生器泵速
(rpm)
实验样品与检测方法
取自不同取样点的实际自来水样,分别编号为Y1和Y2。
在一定PH范围内,铅元素可与硼氢化钾溶液反应生成气态的PbH4,通过载气将PbH4带入电感耦合等离子体光谱仪内进行测试。
移取20mL自来水样品,加入盐酸,定容于25mL容量瓶中,摇匀待测。
分析谱线的选择
选用灵敏度适宜,无其他元素明显干扰的铅220.353分析谱线。
铅元素的谱线选择
标准曲线绘制
铅标准溶液(国家钢铁材料测试中心,1000μg/mL)配置溶液梯度,氢化物发生法绘制标准曲线,线性相关系数大于0.999。
标准曲线浓度(ng/mL)
元素名称 S0 S1 S2 S3 S4
铅元素氢化物发生标准曲线
方法检出限与测定下限
按样品空白连续测定11次,以3倍的标准偏差计算方法检出限,10倍的标准偏差计算方法测定下限。
铅元素氢化物发生检出限(ng/mL)
元素 检出限 测定下限
Pb 0.7 2.3
测定结果
实际样品分析结果(ng/mL)
样品名称 ICP-AES ICP-MS GB 5749-2006
Y1 (0.70)a 0.65 <10
Y2 (0.80)a 0.75 <10
备注a:括号内为参考值,**测定下限2.3 ng/ml。
加标回收率
在实际样品中加入约3倍于实际样品铅的含量,回收率为108%,满足定量要求。
加标回收率
样品名称 样品含量
(ng/mL) 加入量
(ng/mL) 测量值
(ng/mL) 回收率
(%)
Y1 (0.7) a 2.5 3.4 108
备注a:括号内为参考值
结论
本方法采用氢化物发生与plasma 2000电感耦合等离子体**光谱仪联用的方法测定生活饮用水中的铅元素,对2个实际饮用水样进行检测,均未检出铅元素**标,方法检出限及测定下限**国家标准要求,加标回收率好,适用于生活饮用水中铅元素的检测。
Plasma 3000ICP-OES
双向观测全谱电感耦合等离子体光谱仪
Plasma 3000可广泛适用于冶金、地质、材料、环境、食品、医药、石油、化工、生物、水质等各领域的元素分析。
1、 中阶梯光栅与棱镜交叉色散结构,径向和轴向观测接口设计,具有强健的检测能力。
2、 垂直火炬,双向观测,冷锥消除尾焰,地降低自吸效应及电离干扰,从而获得较宽的动态线性范围和较低的背景,保证了准确的测量结果。
3、 高效稳定的自激式固态射频发生器,体积小巧,匹配速度快,确保仪器的高精度运行及优异的长期稳定性。
4、 高速面阵CCD采集技术,单次曝光获取全部谱线信息,真正实现“全谱直读”。
5、 功能强大的软件系统,简化分析方法的开发过程,为用户量身打造简洁、舒适的操作体验。
稳健高效的全固态光源
全固态射频发生器,体积小、效率高,全自动负载匹配,速度快、精度高,能适应各种复杂基体样品及挥发性**溶剂的测试,具有优异的长期稳定性。
冷锥消除尾焰技术,地降低自吸效应和电离干扰,从而获得较宽的动态线性范围和较低的背景,拓宽仪器检测范围,保证准确的测量结果。
垂直炬管的设计,具有较好的样品耐受性,减少了清洁需求,降低了备用炬管的消耗。
简洁的炬管安装定位设计,快速定位,精确的位置重现。
具有低功率待机模式,待机时降低输出功率,减小气体流量,仅维持等离子体运行,节约使用成本。
实时监控仪器运行参数,高性能CAN工业现场总线,**通讯高效可靠。
精密的光学系统
径向观测与轴向观测设计,适应复杂基体下亚ppm到高含量的元素测量。
中阶梯光栅与棱镜交叉色散结构,使用**纯CaF2棱镜,提高光路传输效率,保证了深紫外区的元素测量。
优化的光学设计,采用非球面光学元件,改善成像质量,提高光谱采集效率。
光室气体氛围保持、多点充气技术,缩短光室充气时间,提高紫外光谱灵敏度及稳定性,开机即可测量。
光室气路独立,可充氮气或氩气。
包围式立体控温系统,**光学系统长期稳定无漂移。
进样系统
仪器配备系列经过优化的进样系统,可用于**溶剂、高盐/复杂基体样品、含氢氟酸等样品的测试。
使用可拆卸式或一体式炬管,易于维护,转换快速,使用成本低。
垂直炬管避免高盐沉积,径向观测避免基体干扰,可以获得**高灵敏度和的重复性。
智能炬管自动可调校准技术,自动进行炬管位置优化。
智能蠕动泵和载气优化,一键调谐,保证测试条件的优化。
使用质量流量控制器控制冷却气、辅助气和载气的流量,流量连续可调,**测试性能长期稳定。
4通道12滚轮蠕动泵,泵速连续可调,确保样品导入稳定性。
检测器
大面积背照式CCD检测器, 全谱段响应,高紫外**化效率,抗饱和溢出,具有良好检出限,较宽的动态范围和较快的信号处理速度。
一次曝光,完成全谱光谱信号的采集读取,从而获得较为快速、准确的分析结果。
同类产品中靶面尺寸,**像素,单像素面积24μm X 24μm,三级半导体制冷,制冷温度-35℃,具有较低的噪声和较好的稳定性。
软件系统
人性化的界面设计,流畅易懂,简便易用,针对分析应用优化的软件系统,无须复杂的方法开发,即可快速开展分析操作。
多窗口多方法分析程序,可同时测量、编辑、查看不同的方法数据。
软件谱线库具有7万多条谱线库,智能提示潜在干扰元素,帮助用户合理选择分析谱线。
提供多样化的标准系列编辑模式,支持先测试后设置标准、“三明治”方法测试样品等多种曲线校准模式。
软件支持标准曲线法、标准加入法等分析方法,具有扣除空白、内标校正、干扰校正等多种数据处理方法。
轻松的观测方式设置,直观的测试结果显示,具有多种报表输出格式。
钢研纳克ICP光谱仪对电器回收材料树脂粉中Au、Ag、Cu的测定
1 前言
随着大量家用电器的报废,废电路板的数量越来越大,其回收利用**也引起众多投资者关注。[1]如印刷电路板(PCB)由玻璃纤维、强化树脂和多种金属化合物混合制成,废旧电路板如果得不到妥善处置,其所含溴化阻燃剂等致物质,会对环境和人类健康产生严重的污染和危害,但同时,废旧电路板也具有相当高的经济**。电路板中含有大量普通金属、贵金属和稀有金属[2],金属品味相当于普通矿物中金属品味的几十倍,金属的含量高达10%~60%,而自然界中富矿金属含量也不过3%~5%。由此可见,废旧电路板同时还是一座有待开发的“金矿”。树脂作为废旧电路板的主材料之一,金属含量的测定就成为回收再利用的重要指标。本文利用电感耦合等离子体**光谱法(ICP-AES)完成了对树脂粉中Au、Ag、Cu元素含量的测定,客户参考值Au:10-300g/t,Ag:100-5000g/t。
2 仪器简介
电感耦合等离子体原子**光谱仪简称 ICP-AES ,文中使用钢研纳克单道顺序扫描型光谱仪Plasma1000和全谱型光谱仪Plasma2000。
3 样品前处理
将树脂制成均匀的粉状,准确称取六份2g 试样。树脂属于**材料,首先需要将**成分破换掉,本实验使用两种前处理方式,由于要测定Au元素,需要加入王水,测定Ag元素,有盐酸存在时需过量的盐酸,因此混酸比例为HCl:HNO3=7:1,样品中含有较高含量的硅,因此需加入HF。
(1)将样品置于刚玉坩埚中,1000℃灼烧样品3小时。将灼烧后的样品转移至聚四氟乙烯烧杯中,加入混酸,低温加热,直至样品反应完全后加入2mlHF,待反应完毕加入3mlHClO4,冒烟至近干,加入5ml混酸低温加热10分钟,冷却后定容到50ml容量瓶。
(2)将样品置于聚四氟乙烯烧杯中,加入混酸,低温加热,直至样品反应完全后加入2mlHF,待反应完毕,发现有很多残留,加入3mlHClO4,冒烟至近干,加入5ml混酸低温加热10分钟,冷却后定容到50ml容量瓶。
4 仪器参数
Agilent725:功率 1.20 KW,等离子气流量 15.0 L/min,辅助气流量 1.5 L/min,雾化气流量 0.48 L/min,蠕动泵泵速 15 rpm。观测高度4 mm,玻璃雾化系统和矩管。
Plasma1000:功率 1.25 KW,负高压 800 V,冷却气流量 18.0 L/min,辅助气流量 0.8 L/min,载气流量 0.2 L/min,蠕动泵泵速 20 rpm。观测高度距功率圈上方 12 mm,玻璃雾化系统和矩管。
Plasma2000:功率 1.30 KW,冷却气流量 15.0 L/min,辅助气流量 0.5L/min,载气流量 0.5 L/min,蠕动泵泵速 20 rpm。玻璃雾化系统和矩管。
5 工作曲线与分析结果
5.1各待测元素的谱线选择(nm)
表1 各元素谱线
元素 仪器 Au Ag Cu
谱线 Agilent725 267.594 328.068 324.754
Plasma1000 267.594 328.068 324.754
Plasma2000 267.594 328.068 324.754
5.2校准曲线
元素 Au Ag Cu
S0 0 0 0
S1 0.1 1 10
S2 0.5 5 50
S3 1 10 100
S4 1.5 15 150
5.3实际样品分析
表2是不同前处理的测试结果,结果表明使用方法(1)测定Au,方法(2)测Ag,两种方法均可测Cu。
表2 不同前处理的测试结果
样品 前处理 Ag Au Cu
1# 方法(1) 0.0079 0.0011 0.99
0.0068 0.0009 1.05
方法(2) 0.0076 0.0001 1.10
0.0079 0.0001 1.08
0.0076 0.0001 1.17
2# 方法(1) 0.0075 0.0038 3.23
0.0101 0.0039 3.20
方法(2) 0.0121 0.0003 3.19
0.0132 0.0005 3.63
0.0114 0.0003 4.02
表3是不同仪器测定结果比较,结果基本一致,推荐使用Agilent 725和Plasma 2000。
表4不同仪器及不同分析方法测定结果比较
Ag328.068 Au267.594 Cu324.754
1# Agilent 725 0.0078 0.0010 1.10
Plasma 1000 0.0075 0.0010 1.06
Plasma 2000 0.0069 0.0010 1.03
2# Agilent 725 0.0122 0.0038 3.21
Plasma 1000 0.0116 0.0038 3.21
Plasma 2000 0.0114 0.0038 *
氢化物发生-ICP-AES测定生活饮用水中的Pb元素
摘要:采用钢研纳克公司的电感耦合等离子体**光谱仪Plasma 2000测定饮用水中的Pb元素,配置合适的仪器参数,选择合适的谱线,其方法检出限为0.7ng/ml,线性相关系数为0.99997.该方法适合于测定饮用水中的Pb元素。
水是生命之源,饮用水的安全直接关系到人们的身心健康。近年来由于经济的迅速发展,大量污水废弃物等排入江河之中,水质严重变坏,水中的重金属元素严重**标,直接影响到的身心健康。铅元素作为对人体毒性很大的一种元素,过量的摄入会导致慢性中毒,因此饮用水中铅的测定尤为重要。根据《GB5749-2006生活饮用水卫生标准》 中规定,铅元素的含量不得**过0.01ug/ml。本方法检出限为0.7ng/ml,远远**国家标准。适用于生活饮用水中Pb元素的检测。
1 实验部分
仪器参数及试剂
Plasma 2000 全谱型电感耦合等离子体光谱仪(钢研纳克检测技术有限公司)。
参数设置:功率1250W;冷却气流量15L/min;辅助气流量:0.5L/min;载气流量0.6L/min;
氢化物发生器(PG公司)。
参数设置:转数100rpm。
工作气体为高纯氩气(纯度≥99.999%)。
盐酸,ρ≈1.18 g/ml,优级纯,北京化工厂
,优级纯。
硼氢化钾:优级纯。
铁:优级纯。
氢氧化钾:优级纯。
样品处理
取20ml样品,加入0.25ml浓盐酸,加入0.25ml浓度为40mg/ml的溶液,定容至25ml,摇匀待测。
准确称取0.6g氢氧化钾,2g铁,3g硼氢化钾于100ml烧杯中,加水溶解,而后转移至100ml容量瓶中,定容摇匀。
准确转移0.2ml盐酸至100ml容量瓶中,定容摇匀。
2 条件实验
2.1 方法目的
在实际测试过程中,水中铅元素的值在10 ng/mL, 远远**ICP-AES的检出能力。因此使用ICP检测必须寻找新的方法。由于ICP的进样系统的局限,提升的样品进入等离子体的效率只有1%-2%,绝大部分的提升样品是以废液的形式排出,所以提高进样效率就成为了使用ICP-AES测定水中铅元素的解决方法。
铅能够形成气态的共价氢化物(铅烷),因此若将提升的样品中铅全部以气态形式进入等离子体,那么相当于将铅元素进行富集,将较大提高ICP-AES的检出能力。
2.2 原理分析
在酸性介质下,铅与硼氢化钾作用下,形成共价键挥发性氢化物PbH_4。
KBH_4+3H_2 O+HCL+Pb^(2+)=H_3 BO_3+KCl+PbH_4+4H^+
铅的氢化物反应只有在氧化剂或者螯合剂的存在下才能有较高的效率,可能是因为氢在铅上有很大的过电位,这种过电位阻碍了BH_4^-离子的离解,抑制了铅烷的生成。铅烷的生成可能是BH_4^-离子与Pb^(2+)离子发生“原子(基团)转移反应”的结果,原子(基团)转移是控速步骤,过度中间体[H_3 B···H···Pb]^+。因为H^+的σ共价键必须把大量负电荷放到金属原子上,铅原子上有过量的负电荷,而铅的电负性又比较低,使得H···Pb键不稳定,所以H_3 B···H不容易断裂,H···Pb键不容易形成。如果使用络合剂与铅结合,借助共轭π键移去金属上过量的负电荷,增强H···Pb键 的稳定性,或者使用氧化剂中带负电荷的原子(如氧原子)进攻H_3 B···H键,减弱H_3 B···H的稳定性,都可以促使铅烷的形成。
同时,氧化剂的存在也可能氧化铅原子,使得Pb^(2+)变为Pb^(4+),同样有利于铅烷的生成。
2.3 分析谱线的选择
对于同一种元素, ICP-AES 可以有多条谱线进行检测,但是由于基体和其他元素的干扰,并不是所有的谱线都适用。进行光谱扫描后,根据样品中各待测元素的含量及谱线的干扰情况,选其灵敏度适宜,谱线周围背景低,且无其他元素明显干扰的谱线作为元素的分析线,结果选用Pb220.353作为分析谱线使用。在进行谱线选择时,需要注意背景及干扰情况,选择尽量将背景位置定在尽可能平坦的位置,注意要无小峰,同时左右背景的平均值尽可能与谱峰背景强度一致,见图1。
图1 Pb元素的谱线选择及背景扣除
2.4 样品酸度的影响
实际测试中,样品酸度对铅元素氢化物发生影响很大。李明容等做了酸度对氢化物发生-原子荧光法测定Pb的影响,结果见图2所示。Pb的氢化物发生只在特定的酸度条件下才会达到峰值。因此实验中酸度的影响必须**考虑,否则实验过程可能根本没有信号。目前还不太清楚酸度对铅氢化物发生原理的影响。
图2 酸度对Pb和Cd原子荧光强度的影响。
酸度的影响分为样品本身酸度和载流的酸度。
2.4.1 样品酸度的影响
实验过程中保持一定的条件,通过改变样品中酸度的大小,通过氢化物发生与ICP联用,测定铅强度的变化。保持铅8ng/ml,载流酸度0.2%,样品中浓度为0.4mg/ml,硼氢化钾浓度为15mg/ml, 铁20mg/ml,氢氧化钾6mg/ml,载气0.2ml不变。由表2和图3可知,酸度对氢化物发生测铅的影响很大,酸度在1%左右的时候强度达到值。
表1 样品酸度的影响
样品酸度 强度
0.1% 22
0.5% 253
1% 493
2% 37
3% 3
图3 样品酸度的影响
2.4.2 载流酸度的影响
使用载流酸度对样品酸度进行微调,实验样品中保持样品中酸度1%不变,改变载流酸度。如表与图所示。
表2 载流酸度的影响
载流酸度 强度
0 346
0.1% 361
0.2% 373
0.3% 336
0.4% 271
0.5% 222
0.6% 185
0.7% 171
0.8% 140
1% 98
2% 55
3% 47
4% 47
5% 51
6% 35
图4 载流酸度的影响
2.5 浓度的影响
的作用是作为氧化剂存在,首先它的存在可能氧化铅原子,使得铅原子从正二价变为正四价,其次氧化剂中带负电荷的原子(如氧原子)进攻H_3 B···H键,减弱H_3 B···H的稳定性,使得铅的氢化物较易形成。保持铅8ng/ml,样品酸度1%,载流酸度0.2%,样品中硼氢化钾浓度为15mg/ml, 铁20mg/ml,氢氧化钾6mg/ml,载气0.2ml不变的浓度与强度的关系表和图。有图可知,浓度在0.4mg/ml时强度达到值。
表3 载浓度的影响
图5 载浓度的影响
2.6 铁的浓度影响
铁的结构式如图所示,它的作用是借助共轭π键移去金属上过量的负电荷,增强H···Pb键的稳定性,同时铁也有一定的氧化性。
图6 铁结构式
保持铅8ng/ml,样品酸度1%,4mg/ml,载流酸度0.2%,样品中硼氢化钾浓度为15mg/ml,,氢氧化钾6mg/ml,载气0.2ml不变,铁的浓度与强度的关系表和图。有图可知,铁浓度在20mg/ml时强度达到值。
表4 铁浓度的影响
铁浓度mg/ml 强度
图7 铁浓度的影响
2.7 硼氢化钾的浓度影响
硼氢化钾是重要的还原剂,与铅反应生成铅烷。保持铅8ng/ml,样品酸度1%,4mg/ml,载流酸度0.2%,样品中铁浓度为20mg/ml,,氢氧化钾6mg/ml,载气0.2ml不变,硼氢化钾的浓度与强度关系见表与图。有图可见,在20mg/ml以上,到达平台期,选择一个相对较大的强度的浓度,即30mg/ml。
表5 硼氢化钾浓度的影响
硼氢化钾浓度mg/ml 强度
图8 硼氢化钾浓度的影响
2.8载气流量的影响
载气对铅烷有着较大的影响,若流量过大,则相当于将铅烷气体稀释,测量结果强度较低,若流量过小,铅烷不能完全进入等离子体中,测量结果强度仍然较低。因此需要保持一个较好的载气流速,以期获得强度。保持铅8ng/ml,样品酸度1%,4mg/ml,载流酸度0.2%,样品中铁浓度为20mg/ml,,氢氧化钾6mg/ml,硼氢化钾浓度为30mg/ml,载气变化与强度的关系如表与图所示。因此选择载气0.6L/min为好。
表6 载气流量的影响
载气流量(L/min) 强度
图9 载气流量的影响
2.9功率的影响
保持铅8ng/ml,样品酸度1%,4mg/ml,载流酸度0.2%,铁浓度为20mg/ml,,氢氧化钾6mg/ml,硼氢化钾浓度为30mg/ml,载气0.6L/min,功率变化对铅的影响见表与图。由图与表可知,功率越大,强度越大。但由于强度太大对仪器寿命有影响,因此强度够用即可,选择1250W。
表7 功率的影响
功率(W) 强度
图10 功率的影响
2.10小结
结合以上条件,得出实验条件见表
表8 实验条件汇总
实验条件 浓度
样品酸度 1%
载流酸度 0.2%
浓度 0.4mg/ml
铁浓度 20mg/ml
氢氧化剂浓度 6mg/ml
载气 0.6L/min
功率 1250W
3 结果讨论
3.1校准曲线
实际样品按照本文方法进行分析,标准曲线线性相关系数为0.99997,校准曲线如图1.
图11 Pb元素氢化物发生校准曲线
3.2 测定结果
饮用水溶液实际样品按照本文方法进行分析,其结果见表3.为验证方法准确性,使用ICP-MS进行方法间比对。其结果见表1
表9 实际样品分析结果(ng/mL)
样品名称 ICP-AES ICP-MS GB 5749-2006
J0 40.29 47.39 10
J1 (0.70)a 0.65 <10
J2 (0.80)a 0.75 <10
备注a:括号内为参考值,**测定下限2.3 ng/ml。
3.3方法检出限
按样品空白连续测定11次,以3倍的标准偏差计算方法检出限,10倍的标准偏差计算方法测定下限。
表10 铅元素氢化物发生检出限(ng/mL)
元素 检出限 测定下限
Pb 0.7 2.3
3 结论
本方法采用氢化物发生-ICP-AES联用的方法测定生活饮用水中的Pb元素,检出限低,为0.7ng/ml,远**国家标准。适用于生活饮用水中Pb元素的检测。
钢研纳克检测技术股份有限公司(代码:300797)是*企业中国钢研科技集团有限公司(钢铁研究总院)的二级单位,从事分析仪器装备和分析检测技术的研究、开发和应用的**创新型企业。目前公司提供的主要服务或产品包括分析检测仪器、第三方检测服务、标准物质/标准样品、能力验证服务等检测相关产品与延伸服务。钢研纳克不仅是中国分析仪器设备制造的行业企业,也是国内元素检测领域仪器种类、综合实力的仪器装备和分析测试技术的研究机构之一。公司及子公司牵头制修订7项、参与制修订20余项、制定170余项及行业标准;研制家级标准物质/标准样品300多种。力争成为测试仪器装备领域有影响力的**竞争参与者、成为具有**影响力的材料表征评价认证的和综合解决方案的提供者。钢研纳仪器产品主要包含:电感耦合等离子体质谱仪,ICPMS,ICP光谱仪,国产ICP,国产ICP-MS,ICP光谱分析仪,电感耦合等离子体光谱仪,电感耦合等离子体**光谱仪,食品重金属检测仪、土壤重金属检测仪、波长色散X射线荧光光谱仪、金属原位分析仪、脉冲熔融-飞行时间质谱仪、试验机、环保监测设备等技术水平的检测装备,其中多款仪器*(属国内台套)。产品质量稳定,检测数据可靠,累计市场占有率排名国内行业**,部分产品成为同类产品的业界,牵头制定了相关仪器和检测标准。钢研纳克检测技术股份有限公司是国内早使用和开发ICP光谱仪和ICP-MS的科研单位之一,依托钢铁材料测试中心,培育了一批ICP光谱仪和ICP-MS应用和仪器。ICP光谱仪产品标准GB/T 36244-2018和ICP-MS仪器计量检定规程GB/T 34826-2017的起草单位。重大科学仪器专项《ICP痕量分析仪器的研制》牵头单位,*ICP系列分析仪器的发展。拥有30多年ICP方法开发经验,懂ICP应用的国产ICP&ICP-MS制造商。免费培训,解决客户应用方法的难题,让您ICP光谱仪和ICP-MS用的!,上市公司,品质之选!. 联系人:文经理 电话 手机.