钢研纳克ICP光谱仪测定稀土汽车尾气净化催化剂中Ce、La、Pr、Y、Al、Zr的含量
摘要:研究国产单道扫描ICP光谱仪Plasma1000测定稀土汽车尾气净化催化剂中的主量元素Ce、La、Pr、Y、Al、 Zr的方法。选择了合适的分析线,并采用基体匹配与背景扣除法进行干扰校正。采用所建立的方法对实际样品中的6种元素进行了测定,RSD小于3%且测定结果与参考值一致。本法已用于稀土汽车尾气净化催化剂的快速检测,并获得了满意的结果。
关键词:ICP-AES; 稀土汽车尾气净化催化剂;铈;镧;镨
汽车工业的发展为人类交通带来便利, 但同时也带来严重的大气污染。汽车排放的尾气中主要含有CO、HC、NOX,可导致温室效应、酸雨和城市光化学烟雾,影响生态环境,危害人体健康。为解决这一问题,安装尾气催化净化器是各国普遍采用的机外净化方法[1]。
从20世纪90年始, 铈锆固溶体在汽车尾气净化催化剂中的使用受到国内外的广泛关注。研究发现, 在CeO2中掺杂Zr4 +、La3+和Y3+等可提高CeO2 的高温热稳定性,降低CeO2的还原温度。由于其价格低、热稳定性好、活性较高、使用寿命长等优点,因此在汽车尾气净化领域备受青睐。铈锆固溶体的研究成为目前稀土催化材料研究的热点[2]。
ICP-AES以其检出限低、精密度好、动态范围宽、分析速度快等优点在稀土材料的分析领域已得到了广泛的应用[3-6]。但是在稀土汽车尾气净化催化剂中的检测还很少报道。本文研究了使用国产单道扫描ICP光谱仪测定稀土汽车尾气净化催化剂的主量元素,**良好效果。
1 实验部分
1.1 仪器及参数
Plasma1000单道扫描电感耦合等离子体光谱仪(钢研纳克检测技术有限公司):高纯氩(纯度≥99.999%),光栅为3600条/mm。功率1.15 Kw;冷却气流量18.0 L/min,辅助气流量0.8 L/min,载气流量0.2 L/min;蠕动泵泵速20 rpm;观测高度距功率圈上方12 mm;同轴玻璃气动雾化器,进口旋转雾室,三层同轴石英炬管,中心管2.0 mm。
1.2 试剂
盐酸,ρ≈1.18 g/ml,优级纯,北京化工厂;硝酸,ρ≈1.42 g/ml,优级纯,北京化工厂;硫酸ρ≈1.84g/ml,优级纯,北京化工厂;Ce、La、Pr、Y、Al、Zr的标准溶液质量浓度均为1000 μg/ml,国家钢铁材料测试中心;所用溶液用水均为二次去离子水。
1.3 样品处理
1.3.1 称取0.1 g试料,精确至0.0001 g。置于250 ml烧杯中,加10 ml王水、10 ml(1+1)硫酸,加热至冒硫酸烟,冷却至室温后加10 ml王水加热溶解盐类,取下冷却。
对于含量在30%以下的元素的测定,移入200 ml容量瓶中,补加10 ml(1+1)硫酸、10 ml王水,加水定容,混匀;
对于含量在30%以上的元素的测定,移入500ml容量瓶中,加水40 ml(1+1)硫酸,40 ml王水,加水定容,混匀。
1.3.2 标准系列溶液的配制
表1 各元素的浓度(g/ml)
标液 1 2 3 4
Ce 50.00 80.00 110.00 140.00
La 10.00 20.00 30.00 40.00
Pr 20.00 30.00 40.00 50.00
Y 5.00 10.00 25.00 40.00
Al 80.00 100.00 120.00 140.00
Zr 80.00 100.00 120.00 140.00
2 结果与讨论
2.1分析谱线的选择
由于稀土元素谱线复杂,因此在谱线选择上要充分考虑其光谱干扰。采用对所选谱线进行轮廓扫描的方法,即用纯试剂找到被测元素的峰位,在此峰位及其附近扫描实际样品终确定合适的谱线并在其合适的位置扣除背景,从而消除或减少干扰。
表2 推荐的分析线
元素 分析线/nm
Ce 446.021
La 333.749
Pr 422.535
Y 324.228
Al 309.271
Zr 343.823
2.2 实际样品测定结果
处理了3种牌号的实际样品,在plasma1000上按照本文的方法测定了各元素的含量,结果如下:
表3 实际样品测定结果
样品 含量w/%
Ce Zr La Pr Y Al
1# 12.01 20.70 3.90 - 1.83 24.16
2# 48.62 21.57 2.54 5.38 - -
3# 23.97 42.20 4.22 - 3.77 -
注:“-”为含量小于该元素的检出限。
2.3 方法精密度试验
将3种牌号的样品,在plasma1000上进行了精密度测试,各元素测定11次。试验结果表明, 方法精密度RSD值小于3%。
表4 方法精密度实验
元素 含量w% RSD/% 元素 含量w% RSD/%
Ce 12.01 1.50 Y 1.83 0.69
48.62 0.21 3.77 0.33
23.97 0.63 Al 24.16 1.38
La 3.90 0.65 Zr 20.70 0.79
2.54 0.84 21.57 0.44
4.22 0.75 42.20 0.73
Pr 5.38 0.59
3 结论
以上研究表明,应用单道扫描型ICP-AES Plasma1000仪器测定稀土汽车尾气净化催化剂中的Ce、La、Pr、Y、Al、 Zr时准确度高、精密度好。该方法简便、快速,完全满足实际产品分析需求。
无处遁形的水中铅----氢化物发生-ICP-AES法测定饮用水中铅
钢研纳克江苏检测技术研究院有限公司
铅会严重影响人体健康,过量的摄入会导致慢性中毒,造成人体肝、肾、大脑损伤,儿童铅中毒较会导致发育迟缓,智力低下等。水为生命之源,饮用水中铅含量**标造成的危害较加严重。根据《GB 5749-2006生活饮用水卫生标准》中规定,铅元素的含量不得**过10 ng/mL。针对生活饮用水中的铅元素测定,本文采用氢化物发生与电感耦合等离子体**光谱仪联用的方法,测定生活饮用水中铅含量。本方法检出限为0.7 ng/mL,测定下限为2.3 ng/mL,适用于生活饮用水中铅元素的检测。
仪器配置
Plasma 2000 电感耦合等离子体**光谱仪
观测方式:轴向观测
进样系统:氢化物发生装置
分光系统:中阶梯光栅与棱镜交叉色散结构,全谱瞬态直读
检测器:大面积背照式CCD芯片,高紫外检出效率,宽动态范围
光源:高效固态射频发生器,小体积高效率
Plasma 2000仪器检测条件
观测方向 雾化器流量
(L/min) 辅助气流量
(L/min) 载气流量
(L/min)
轴向 0.6 0.5 13.5
RF功率
(W) 曝光时间
(s) 进样时间
(s) 氢化物发生器泵速
(rpm)
实验样品与检测方法
取自不同取样点的实际自来水样,分别编号为Y1和Y2。
在一定PH范围内,铅元素可与硼氢化钾溶液反应生成气态的PbH4,通过载气将PbH4带入电感耦合等离子体光谱仪内进行测试。
移取20mL自来水样品,加入盐酸,定容于25mL容量瓶中,摇匀待测。
分析谱线的选择
选用灵敏度适宜,无其他元素明显干扰的铅220.353分析谱线。
铅元素的谱线选择
标准曲线绘制
铅标准溶液(国家钢铁材料测试中心,1000μg/mL)配置溶液梯度,氢化物发生法绘制标准曲线,线性相关系数大于0.999。
标准曲线浓度(ng/mL)
元素名称 S0 S1 S2 S3 S4
铅元素氢化物发生标准曲线
方法检出限与测定下限
按样品空白连续测定11次,以3倍的标准偏差计算方法检出限,10倍的标准偏差计算方法测定下限。
铅元素氢化物发生检出限(ng/mL)
元素 检出限 测定下限
Pb 0.7 2.3
测定结果
实际样品分析结果(ng/mL)
样品名称 ICP-AES ICP-MS GB 5749-2006
Y1 (0.70)a 0.65 <10
Y2 (0.80)a 0.75 <10
备注a:括号内为参考值,**测定下限2.3 ng/ml。
加标回收率
在实际样品中加入约3倍于实际样品铅的含量,回收率为108%,满足定量要求。
加标回收率
样品名称 样品含量
(ng/mL) 加入量
(ng/mL) 测量值
(ng/mL) 回收率
(%)
Y1 (0.7) a 2.5 3.4 108
备注a:括号内为参考值
结论
本方法采用氢化物发生与plasma 2000电感耦合等离子体**光谱仪联用的方法测定生活饮用水中的铅元素,对2个实际饮用水样进行检测,均未检出铅元素**标,方法检出限及测定下限**国家标准要求,加标回收率好,适用于生活饮用水中铅元素的检测。
钢研纳克微波消解-ICP-AES法测定塑料中Pb、Hg、Cd、Cr
摘要: 研究采用微波消解法进行溶样、ICP-AES测定塑料中Pb、Hg、Cd和Cr含量的方法。选择了合适的分析谱线。结果表明,Pb、Hg、Cd、Cr的检出限分别为0.02mg/L、0.02mg/L、0.002mg/L、0.002mg/L,回收率为86%~107%。该方法适用于塑料中Pb、Hg、Cd和Cr含量的快速分析。
关键词:微波消解;ICP-AES;塑料;Pb;Hg;Cd;Cr
塑料已经广泛地应用到各行各业,与人们的生活息息相关。然而由于塑料的生产工艺等原因不可避免地使用了有害的重金属,其中的Pb、Hg、Cd、Cr等重金属的危害已引起了**的重视,欧盟已各种严厉的政策、法令来限制塑料中Pb和Cd的使用,如RoHS指令、包装指令、玩具指令等。因此, 许多出口产品中的塑料部件均需要进行Pb、Hg、Cd、Cr含量的测定。
相对于传统的湿式消解法和马弗炉高温灰化法, 微波消解作为一种较新的样品处理技术具有一系列的优点:1)加热快、升温高、消解能力强,大大缩短了溶样时间;2)消耗酸溶剂少,空白值低;3)避免了挥发损失和样品玷污,回收率高,提高了分析的准确度和精密度。
相对于传统仪器原子吸收法, ICP-AES以其检出限低,精密度好,动态范围宽,分析速度快等优点在塑料制品分析领域的应用已有报道 [1-6]。本文研究了使用国产单道扫描ICP光谱仪测定塑料中的Pb、Hg、Cd、Cr,检测结果令人满意。
1 实验部分
1.1 仪器及参数
Plasma1000单道扫描电感耦合等离子体光谱仪(钢研纳克检测技术有限公司);高纯氩(纯度≥99.999%),光栅为3600条/mm。参数设置:功率1.15 Kw;冷却气流量18.0 L/min,辅助气流量0.8 L/min,载气流量0.2 L/min;蠕动泵泵速20 rpm;观测高度距功率圈上方12 mm;同轴玻璃气动雾化器,进口旋转雾室,三层同轴石英炬管,中心管2.0 mm。
EXCEL 全功能型微波化学工作平台(上海乞尧)。
1.2 试剂
硝酸,ρ≈1.42 g/ml,优级纯,北京化工厂;过氧化氢,ρ≈1.13g/ml,优级纯,北京化工厂;Pb、Hg、Cd、Cr的标准溶液质量浓度均为1000 μg/ml,国家钢铁材料测试中心;所用溶液用水均为二次去离子水。
1.3 样品处理
称取已粉碎的塑料试样0.1 g (精确至0.0001g) 于聚四氟乙烯微波消解罐中, 加入10 mL HNO3、2mL H2O2溶液, 按照设定的消解程序(如表1所示)进行微波消解, 为避免反应过于剧烈, 采用程序升温的方法进行消解。消解完毕后,转移定容至50 mL, 待测。随同做试样空白试验。
表1 样品微波消解程序
升温程序 压力/MPa 温度/℃ 保持时间/min
2 结果与讨论
2.1 分析谱线的选择
对于同一种元素, ICP-AES 可以有多条谱线进行检测,但是由于基体和其他元素的干扰,并不是所有的谱线都适用。进行光谱扫描后,根据样品中各待测元素的含量及谱线的干扰情况,选定灵敏度适宜、谱线周围背景低、且无其他元素明显干扰的谱线作为元素的分析线,结果见表2。
表2 各元素分析线
2.2 方法的检出限
以空白溶液测定10次的标准偏差的3倍所对应的浓度作为检出限。各元素的检出限见下表3。由表可见,各元素的检出限均较低,可以满足塑料产品的日常检测要求。
表3 元素的检出限
元素 Pb Hg Cd Cr
检出限/(mg/L) 0.02 0.02 0.002 0.002
2.3 实际样品的测定
对实际塑料样品按照本文方法进行分析,并将测定结果与相应的参考值进行比对,结果表明,各元素的测试结果与参考值基本一致。
表4 测定结果与参考值对比
样品 元素 测定结果w/% 参考值w/%
2.4加标回收试验
按照选定的ICP工作条件和微波消解程序, 在样品中分别加入Pb、Hg、Cd、Cr混标溶液进行加标回收试验, 回收试验结果列于表5。由表5可知, 待测元素Pb、Hg、Cd、Cr的加标回收率在86%~107%, 表明本方法准确可靠。
表5 方法的加标回收
元素 本底值 加标量 测定均值 回收率
/(mg /L) /(mg /L) /(mg /L) /%
3 结论
对塑料进行微波消解前处理, 采用高灵敏度的单道扫描型ICP- AES成功测定了其中Pb、Hg、Cd、Cr含量,此法简便、准确, 适用于塑料中Pb、Hg、Cd、Cr的快速测定。
Plasma 3000ICP-OES
双向观测全谱电感耦合等离子体光谱仪
Plasma 3000可广泛适用于冶金、地质、材料、环境、食品、医药、石油、化工、生物、水质等各领域的元素分析。
1、 中阶梯光栅与棱镜交叉色散结构,径向和轴向观测接口设计,具有强健的检测能力。
2、 垂直火炬,双向观测,冷锥消除尾焰,地降低自吸效应及电离干扰,从而获得较宽的动态线性范围和较低的背景,保证了准确的测量结果。
3、 高效稳定的自激式固态射频发生器,体积小巧,匹配速度快,确保仪器的高精度运行及优异的长期稳定性。
4、 高速面阵CCD采集技术,单次曝光获取全部谱线信息,真正实现“全谱直读”。
5、 功能强大的软件系统,简化分析方法的开发过程,为用户量身打造简洁、舒适的操作体验。
稳健高效的全固态光源
全固态射频发生器,体积小、效率高,全自动负载匹配,速度快、精度高,能适应各种复杂基体样品及挥发性**溶剂的测试,具有优异的长期稳定性。
冷锥消除尾焰技术,地降低自吸效应和电离干扰,从而获得较宽的动态线性范围和较低的背景,拓宽仪器检测范围,保证准确的测量结果。
垂直炬管的设计,具有较好的样品耐受性,减少了清洁需求,降低了备用炬管的消耗。
简洁的炬管安装定位设计,快速定位,精确的位置重现。
具有低功率待机模式,待机时降低输出功率,减小气体流量,仅维持等离子体运行,节约使用成本。
实时监控仪器运行参数,高性能CAN工业现场总线,**通讯高效可靠。
精密的光学系统
径向观测与轴向观测设计,适应复杂基体下亚ppm到高含量的元素测量。
中阶梯光栅与棱镜交叉色散结构,使用**纯CaF2棱镜,提高光路传输效率,保证了深紫外区的元素测量。
优化的光学设计,采用非球面光学元件,改善成像质量,提高光谱采集效率。
光室气体氛围保持、多点充气技术,缩短光室充气时间,提高紫外光谱灵敏度及稳定性,开机即可测量。
光室气路独立,可充氮气或氩气。
包围式立体控温系统,**光学系统长期稳定无漂移。
进样系统
仪器配备系列经过优化的进样系统,可用于**溶剂、高盐/复杂基体样品、含氢氟酸等样品的测试。
使用可拆卸式或一体式炬管,易于维护,转换快速,使用成本低。
垂直炬管避免高盐沉积,径向观测避免基体干扰,可以获得**高灵敏度和的重复性。
智能炬管自动可调校准技术,自动进行炬管位置优化。
智能蠕动泵和载气优化,一键调谐,保证测试条件的优化。
使用质量流量控制器控制冷却气、辅助气和载气的流量,流量连续可调,**测试性能长期稳定。
4通道12滚轮蠕动泵,泵速连续可调,确保样品导入稳定性。
检测器
大面积背照式CCD检测器, 全谱段响应,高紫外**化效率,抗饱和溢出,具有良好检出限,较宽的动态范围和较快的信号处理速度。
一次曝光,完成全谱光谱信号的采集读取,从而获得较为快速、准确的分析结果。
同类产品中靶面尺寸,**像素,单像素面积24μm X 24μm,三级半导体制冷,制冷温度-35℃,具有较低的噪声和较好的稳定性。
软件系统
人性化的界面设计,流畅易懂,简便易用,针对分析应用优化的软件系统,无须复杂的方法开发,即可快速开展分析操作。
多窗口多方法分析程序,可同时测量、编辑、查看不同的方法数据。
软件谱线库具有7万多条谱线库,智能提示潜在干扰元素,帮助用户合理选择分析谱线。
提供多样化的标准系列编辑模式,支持先测试后设置标准、“三明治”方法测试样品等多种曲线校准模式。
软件支持标准曲线法、标准加入法等分析方法,具有扣除空白、内标校正、干扰校正等多种数据处理方法。
轻松的观测方式设置,直观的测试结果显示,具有多种报表输出格式。
钢研纳克检测技术股份有限公司(代码:300797)是*企业中国钢研科技集团有限公司(钢铁研究总院)的二级单位,从事分析仪器装备和分析检测技术的研究、开发和应用的**创新型企业。目前公司提供的主要服务或产品包括分析检测仪器、第三方检测服务、标准物质/标准样品、能力验证服务等检测相关产品与延伸服务。钢研纳克不仅是中国分析仪器设备制造的行业企业,也是国内元素检测领域仪器种类、综合实力的仪器装备和分析测试技术的研究机构之一。公司及子公司牵头制修订7项、参与制修订20余项、制定170余项及行业标准;研制家级标准物质/标准样品300多种。力争成为测试仪器装备领域有影响力的**竞争参与者、成为具有**影响力的材料表征评价认证的和综合解决方案的提供者。钢研纳仪器产品主要包含:电感耦合等离子体质谱仪,ICPMS,ICP光谱仪,国产ICP,国产ICP-MS,ICP光谱分析仪,电感耦合等离子体光谱仪,电感耦合等离子体**光谱仪,食品重金属检测仪、土壤重金属检测仪、波长色散X射线荧光光谱仪、金属原位分析仪、脉冲熔融-飞行时间质谱仪、试验机、环保监测设备等技术水平的检测装备,其中多款仪器*(属国内台套)。产品质量稳定,检测数据可靠,累计市场占有率排名国内行业**,部分产品成为同类产品的业界,牵头制定了相关仪器和检测标准。钢研纳克检测技术股份有限公司是国内早使用和开发ICP光谱仪和ICP-MS的科研单位之一,依托钢铁材料测试中心,培育了一批ICP光谱仪和ICP-MS应用和仪器。ICP光谱仪产品标准GB/T 36244-2018和ICP-MS仪器计量检定规程GB/T 34826-2017的起草单位。重大科学仪器专项《ICP痕量分析仪器的研制》牵头单位,*ICP系列分析仪器的发展。拥有30多年ICP方法开发经验,懂ICP应用的国产ICP&ICP-MS制造商。免费培训,解决客户应用方法的难题,让您ICP光谱仪和ICP-MS用的!,上市公司,品质之选!. 联系人:文经理 电话 手机.