1.光的转化率17%,(每平方太阳能量为1000W,实际利用效率为170W)。
2.目前市场路灯透镜材料为改良光学材料,透过率≥93%,耐温-38-+90度。
3.LED路灯透镜,主要用于LED路灯的透镜,光斑为矩形,材料是PMMA光学材料,透过率≥93%,耐温-38-+90度,抗UV紫外线`黄化率30000小时无变化等。
4.路面照度均匀度的平均照度0.48。光斑比值1:2。
5.符合道路照度。(实际1/2中心光斑达到25LUX,1/4中心光强达到15LUX,16米远的光强4LUX,重叠光强约6LUX。
6.它在新型城市照明中有非常好的应用前景。对深度的调光,且颜色和其他特性不会因调光而变化。
7.适应湿度:≤95%。
8.品质保证:2年。
LED路灯的散热是需要重点解决的问题之一,不仅直接关系到LED实际工作时的发光效率,而且由于LED路灯亮度要求高、发热量大,并且户外这种使用环境比较苛刻,如果散热不好会直接导致LED快速老化,稳定性降低。因为在户外使用的道路灯具,应具有一定等级的防尘防水功能(IP),良好的IP防护往往会妨碍LED的散热。解决这个相互矛盾但又都得解决的两个问题是道路灯具设计时应关注的一个重要方面。在这一方面也是国内把LED应用于道路灯具中时出现不合格及不合理的情况多的。国内使用中出现的不合格及不合理的情况基本有:
(1)对LED采用了散热器,但LED连线的接线端子及散热器的设计无法达到IP45及以上等级,无法满足GB7000.5/IEC6598-2-3 标准的要求。
(2)采用普通的道路灯具外壳,在灯具出光面内用矩阵式LED,这种设计虽说能满足IP试验,但是由于灯具内的不通风会造成在工作时,灯具内腔的温度会升高到50℃~80℃,在如此高的工况下,LED的发光效率是不可能高的,同时LED的使用寿命也将大打折扣计,实际上存在明显的不合理情况。
(3)在灯具内采用了仪表风扇对LED及散热器进行散热,其进风口设计在灯具的下方,以避免雨水的进入,出风口设计在下射LED光源的四周。这样也能有效避免雨水的进入,另外散热器和LED(光源腔)不处于同一空腔内,这种设计如做的好,按灯具的IP试验要求,能顺利通过。这一方案,不仅解决了LED的散热问题,而且同时满足了IP等级的要求。但是这种看似良好的设计,实际上存在明显的不合理情况。因为在我国绝大多数道路灯具的使用场合,空中的飞尘量是较大的,有时会达到很大(例如起沙尘暴),这类灯具在一般条件下使用一段时间后(约三个月至半年),其内部散热器的缝隙内就会塞满灰尘,使散热器效果大打折扣,后还会使LED因工作温度过高而使用寿命明显缩短。这一方案的不足是在于不能持久良好地使用。
要兼顾道路灯具中LED的散热及IP防护,较合理的设计思想是:
a、在关键的散热位置,采用导热板。导热板是在金属板的内部,均布有供冷媒流动的细导管,并在细导管内充有冷媒,当导热板的某一部位受热时,细导管内的冷媒会快速流动而使热量迅速地传导。好的导热板的热传导系数可以达到同厚度铜材板的8~12倍,虽说价格较高,但如在关键部位使用,对LED的散热将起到事半功倍的作用。
b、把灯具的外壳设计成散热器状。大部分的道路灯具外壳是铝材的,直接利用灯具外壳外面作为散热器既可以保证IP防护等级的要求,也可以得到很大的散热面积,另外,灯具外壳组成的散热器在有落尘时,可以通过自然的风雨而冲洗,从而可保证散热器工作的持续有效性。
众所周知,空中的闪电发射的是一广谱的无线电波,而架空的道路灯具供电线路,是良好的接受无线。两根电源线接收的同一闪电发出的无线电波,对驱动电路来讲是属于共模干扰信号,这种共模干扰对地可达数佰伏到数千伏,很容易击穿驱动电路内的EMC接地电容或较小的对地(对外壳)的电气间隙,造成驱动电路的损坏。
另外由于我国的供电线路是三相四线制中性线接地的极性电源,所以在两根架空供电线的各段,在感应到闪电的无线电波的瞬间,由于两根供电线对地的瞬时阻抗不同而使两根供电线间产生一个差模的干扰电压,这一瞬时差模干扰电压也可达到数百伏至3000多伏,这一电压往往会击穿驱动电路的电源整流二极管和印制线路板上的不同极性电极间的电气间隙,LED控制器同样会使驱动电路损坏。
要解决这一问题,必须在LED的驱动电路中的输入端,并接快速响应的压敏电阻,以保证差模干扰的泄放。由于闪电的感应干扰是重复多次的,当干扰电压高时,压敏电阻瞬时导通泄放的电流可能很大,所以采用的压敏电阻不仅应具有快速的响应能力,还应具备瞬时导通数十安培的泄放能力而不损坏。除了采用压敏电阻外,LED的驱动电路的输入端还应结合传导干扰(EMI)的防护,设计有复合的LC网络,使这些LC网络不仅能阻碍内部的EMI对电网的泄露,而且能对闪电的干扰信号起到明显的抑制作用。
还有,LED驱动电路各点对地的电气间隙应保持在7mm以上,EMI防护的接地电容以及驱动电路的对地绝缘强度,应达到强化绝缘(4V+2750V)的要求,这样能使LED的驱动电路具有良好的抗差模和共模雷电感应的能力。
技术原理
传统LED路灯设计主要设计重点在LED的流明数上,而对的散热则的关注较少。实际上,LED的流明数正在迅速的增加。2009年量产LED的单瓦流明数已经达到100流明,而且这一数值还在快速地增长。与之对应的传热学理论体系已经成熟,我们可以使用的传热手段也基本明确:传导、对流、和相变传热。因此,在传热或者说散热问题上,我们可以采取的措施是可见的、有限的。
LED路灯散热技术,一般使用多为导热板方式,是一片5mm厚的铜板,实际上算是均温板,把热源均温掉;也有加装散热片来散热,但是重量太大。重量在路灯系统上十分重要,因为路灯高有9米,若太重危险性就增加,尤其遇到台风、地震都可能产生意外.国内有厂家采用全球创的针状散热技术,针状散热器的散热效率要比传统片状散热器有很大幅度提高,能使LED结温比普通散热器低15℃以上,并且防水性能比普通铝型材散热器要好,同时在重量和体积上也有所改进。另外,针对大功率LED灯具开发的石墨散热片也具有良好的导热和散热性能。
散热方式主要有:自然对流散热、加装风扇强制散热、热管和回路热管散热等。加装风扇强制散热方式系统复杂、可靠性低,热管和回路热管散热方式成本高。而路灯具有户外夜间使用、散热面位于侧上面以及体型受限制较小等有利于空气自然对流散热的优点,所以LED路灯建议尽可能选择自然对流散热方式。
LED路灯散热设计中存在的问题有:散热翅片面积随意设定,散热翅片布置方式不合理,灯具散热翅片的布置没有考虑到灯具的使用方式,影响到翅片效果的发挥,强调热传导环节、忽视对流散热环节,尽管众多的厂家考虑了各种各样的措施:热管、回路热管、加导热硅脂等等,却没有认识到热量终还是要依靠灯具的外表面积散走,.忽视传热的均衡性,如果翅片的温度分布严重不均匀,将会导致其中一部分的翅片没有发挥作用或作用很有限。
散热式大功率LED路灯灯具。其目的是解决大功率LED灯具散热问题,提出一种空气对流散热式大功率LED路灯灯具,它包括有灯头组件、灯具散热体组件和灯尾组件,灯具散热体组件为弧弦柱形壳体,两端开口,其弧柱面两侧面为立面,立面也开有阵列通孔,在弧弦柱形壳体内腔设有4~10条轴向排列的并与弧柱面柱面固接立筋导热板,立筋导热板和弧弦柱形壳体两侧的两个立面也都开有阵列通孔,立筋导热板和弧弦柱形壳体两侧的两个立面在灯具散热体组件内形成5~11条热空气流动的散热通道。本实用新型优点是散热体内腔有多条热空气流动的散热通道,立筋导热板也都充当散热面,热交换面增加,热排放效率高。
优点
1、本身的特性——光的单向性,没有光的漫射,保证光照效率。
2、LED路灯有特的二次光学设计,将LED路灯的光照射到所需照明的区域,进一步提高了光照效率,以达到节能目的。
3、LED的已达110-130lm/W,而且还有很大的发展空间,理论值达360lm/W。而高压钠灯的发光效率是随功率增加才有所增加,因此,总体光效LED路灯比高压钠灯强;(这个总体光效是理论上的,实际上250W以上高压钠灯的光效高于LED灯)。
4、LED路灯的光显色性比高压钠灯高许多,高压钠灯显色指数只有23左右,而LED路灯显色指数达到75以上,从视觉心理角度考虑,达到同等亮度,LED路灯的光照度平均可以比高压钠灯降低20%以上,。
5、光衰小,一年的光衰不到3%,使用10年仍达到道路要求,而高压钠灯光衰大,一年左右已经下降30%以上,因此,LED路灯在使用功率的设计上可以比高压钠灯低。
6、LED路灯有自动控制节能装置,能实现于满足不同时段照明要求情况下可能的降低功率,节省电能。可实现电脑调光,分时间段控制,光线控制,温度控制,自动巡检等人性化功能。
7、寿命长:能使用5万小时以上,提供三年的质量保证。不足之处就是电源的寿命得不到保证。
8、光效高:采用≥100LM以上的芯片,相对于传统高压钠灯能节能75%以上。
9、安装简便:无需加埋电缆无需整流器等,直接将安装于灯杆接上或者将光源嵌套原有灯壳。
10、散热控制出色:夏天温度控制在45度以下,并采用被动散热方式,夏天的散热**不足。
11、质量可靠:电路电源全部采用高质量元器件,每颗LED都有单过流保护,无需担心损坏。
12、光色均匀:不加透镜,不以提高亮度而牺牲均匀光色,从而保证无光圈光色均匀。
13、LED不含有害金属汞,在报废时不会对环境造成危害。
综合上述原理的节能效果显著,代替高压钠灯可节电60%以上。
维护*:相对于传统路灯,LED路灯维护成本极低,经过比较,不到6年即可收回全部投入成本。
交通信号灯方案,涉及交通基础的一些基建单位,还会与路政、部门,以及交通部门保持沟通。具体方案实施落地的时候,关于马路路口的路边灯杆、强电、弱电信号沟通等。所以,客流交通信号等控制方案要做细,现场考察要到位。可以做成一个,安防及道路智慧、信息发布、应急可视报警的整体解决方案。除了方案本身的功能定位外,还可以给出更好的运营模式。 在冬季低温下太阳能路灯锂电池容量发挥不好,会受到影响,随着温度越低,实际表现出来的容量越低。在-20℃的情况下,发挥出的容量相当于常温环境下的60~75%(非正规厂家生产的锂电池可能更低)。
石家庄华朗电子科技有限公司,是从事设计、研发、生产、安装和维护太阳能照明、户外绿色照明产品的科技公司。石家庄华朗电子科技有限公司,位于石家庄市石铜路580号,河北(福建)中小企业科技园。这里近临南二环、南三环及青银高速,交通顺畅、物流便捷,区位优势明显。华朗电子科技有限公司拥有一支工作经验丰富的工程技术人才和管理人才团队,在经过多年不断引进、集成、研发的基础上,已经具备完善的产品研发、生产能力,并先后推出了具有自主知识产权的产品“太阳能路灯灯杆内置式锂电池组”“多段式太阳能路灯锂电池组”。同时,不断加强企业科学管理,建立的生产工艺和全面的质量保证体系,为华朗产品提供了可靠的**。 华朗电子科技有限公司诚邀有志于太阳能照明、户外绿色照明产品开发、推广、服务的**企业及有识之士一道,合作共赢,共创产业辉煌。