SIEMENS浔之漫智控技术有限公司用户往往对电磁制动、再生制动、动态制动的作用混淆,选择了错误的配件。
动态制动器由动态制动电阻组成,在故障、急停、断电时通过能耗制动缩短的机械进给距离。
再生制动是指伺服电机在减速或停车时将制动产生的能量通过逆变回路反馈到直流母线。经阻容回路吸收。
电磁制动是通过机械装置锁住电机的轴。
三者的区别:
(1)再生制动必须在伺服器正常工作时才起作用,在故障、急停、电源断电时等情况下无法制动电机。动态制动器和电磁制动工作时不需电源。
(2)再生制动的工作是系统自动进行,而动态制动器和电磁制动的工作需外部控制。
(3)电磁制动一般在sv off后启动,否则可能造成放大器过载。动态制动器一般在sv off或主回路断电后启动,否则可能造成动态制动电阻过热。
选择配件的注意事项:
(1) 有些系统如传送装置,升降装置等要求伺服电机能尽快停车。而在故障、急停、电源断电时伺服器没有再生制动无法对电机减速。同时系统的机械惯量又较大,这时需选用动态制动器动态制动器的选择要依据负载的轻重,电机的工作速度等。
(2) 有些系统要维持机械装置的静止位置需电机提供较大的输出转矩且停止的时间较长,如果使用伺服的自锁功能往往会造成电机过热或放大器过载。这种情况就要选择带电磁制动的电机。
(3) 三菱的伺服器都有内置的再生制动单元,但当再生制动较频繁时可能引起直流母线电压过高,这时需另配再生制动电阻。再生制动电阻是否需要另配,配多大的再生制动电阻可参本的使用说明。需要注意的是样本列表上的制动次数是电机在空载时的数据。实际选型中要先根据系统的负载惯量和样本上的电机惯量,算出惯量比。再以样本列表上的制动次数除以(惯量比+1)。这样得到的数据才是允许的制动次数。
西门子6SL3130-6TE21-6AA4参数详细
1,为什么会发热?
任何电机都会发热,只是发热程度不同罢了。对于各种步进电机而言,内部都是由铁芯和绕组线圈组成的。绕组有电阻,通电会产生损耗,损耗大小与电阻和电流的平方成正比,这就是我们常说的铜损,如果电流不是标准的直流或正弦波,还会产生谐波损耗;铁心有磁滞涡流效应,在交变磁场中也会产生损耗,其大小与材料,电流,频率,电压有关,这叫铁损。铜损和铁损都会以发热的形式表现出来,从而影响电机的效率。步进电机一般追求定位精度和力矩输出,效率比较低,电流一般比较大,且谐波成分高,电流交变的频率也随转速而变化,因而步进电机普遍存在发热情况,且情况比一般交流电机严重。
2,步进电机发热的合理范围?。
电机发热允许到什么程度,主要取决于电机内部绝缘等级。内部绝缘性能在高温下(130度以上)才会被破坏。所以只要内部不**过130度,电机便不会损坏,而这时表面温度会在90度以下。所以,步进电机表面温度在70-80度都是正常的。简单的温度测量方法有用点温计的,也可以粗略判断:用手可以触摸1-2秒以上,不**过60度;用手只能碰一下,大约在70-80度;滴几滴水迅速气化,则90度以上了。
3,步进电机工作方式不同,发热也不同。
遇采用恒流驱动技术时,步进电机在静态和低速下,电流会维持相对恒定,以保持恒力矩输出。速度高到一定程度,电机内部反电势升高,电流将逐步下降,力矩也会下降。因此,因铜损带来的发热情况就与速度相关了。静态和低速时一般发热高,高速时发热低。但是铁损(虽然占的比例较小)变化的情况却不尽然,而电机整个的发热是二者之和,所以上述只是一般情况。
4,步进电机发热会影响步进电机的工作寿命吗?
电机发热虽然一般不会影响电机的寿命,对大多数客户来说没必要理会。但是,严重的发热会带来一些负面影响。如电机内部各部分热膨胀系数不同导致结构应力的变化和内部气隙的微小变化,会影响电机的动态响应,高速会容易失步。又如有些场合不允许电机的过度发热,如医疗器械和高精度的测试设备等。因此对电机的发热应当进行必要的控制。我们的步进电机用在钢铁机器人上,环境温度100多度,至今工作正常。
5,步进电机发热问题的解决方案?
如果步进电机驱动器有自动半流模式,尽量让其工作在半流状态,因为此时步进电机全流工作发热较大 。
如果负载力矩范围允许的情况下,可以把电机额定电流降下来,比如5a电机,让其工作在4a状态下;
选择低电阻,低电流的步进电机,减少铜损和铁损。
加装风机,强制散热。
用于国内变压器的高压绕组一般联成y接法,中压绕组与低压绕组的接法要视系统情况而决定。所谓系统情况就是指高压输电系统的电压相量与中压或低压输电系统的电压相量间关系。如低压系配电系统,则可根据标准规定决定。
高压绕组常联成y接法是由于相电压可等于线电压的57.7%,每匝电压可低些。
1).国内的500、330、220与110kv的输电系统的电压相量都是同相位的,所以,对下列电压比的三相三绕组或三相自耦变压器,高压与中压绕组都要用星形接法。当三相三铁心柱铁心结构时,低压绕组也可采用星形接法或角形接法,它决定于低压输电系统的电压相量是与中压及高压输电系统电压相量为同相位或滞后30°角。
500/220/lvkv─yn,yn0,yn0或yn,yn0,d11
220/110/lvkv─yn,yn0,yn0或yn,yn0,d11
330/220/lvkv─yn,yn0,yn0或yn,yn0,d11
330/110/lvkv─yn,yn0,yn0或yn,yn0,d11
2).国内60与35kv的输电系统电压有二种不同相位角。
如220/60kv变压器采用ynd11接法,与220/69/10kv变压器用yn,yn0,d11接法,这二个60kv输电系统相差30°电气角。
当220/110/35kv变压器采用yn,yn0,d11接法,110/35/10kv变压器采用yn,yn0,d11接法,以上两个35kv输电系统电压相量也差30°电气角。
所以,决定60与35kv级绕组的接法时要慎重,接法必须符合输电系统电压相量的要求。根据电压相量的相对关系决定60与35kv级绕组的接法。否则,即使容量对,电压比也对,变压器也无法使用,接法不对,变压器无法与输电系统并网。
3).国内10、6、3与0.4kv输电与配电系统相量也有两种相位。在上海地区,有一种10kv与110kv输电系统电压相量差60°电气角,此时可采用110/35/10kv电压比与yn,yn0,y10接法的三相三绕组变压器,但限用三相三铁心柱式铁心。
4).但要注意:单相变压器在联成三相组接法时,不能采用yny0接法的三相组。三相壳式变压器也不能采用yny0接法。
三相五柱式铁心变压器必须采用yn,yn0,yn0接法时,在变压器内要有接成角形接法的*四绕组,它的出头不引出(结构上要做电气试验时引出的出头不在此例)。
5).不同联结组的变压器并联运行时,一般的规定是联结组别标号必须相同。
6).配电变压器用于多雷地区时,可采用yzn11接法,当采用z接法时,阻抗电压算法与yyn0接法不同,同时z接法绕组的耗铜量要多些。yzn11接法配电变压器的防雷性能较好。
7).技术'>;三相变压器采用四个卷铁心框时也不能采用yny0接法。
8).以上都是用于国内变压器的接法,如出口时应按要求供应合适的接法与联结组标号。
9).一般在高压绕组内都有分接头与分接开关相联。因此,选择分接开关时(包括有载调压分接开关与无励磁调压分接开关),必须注意变压器接法与分接开关接法相配合(包括接法、试验电压、额定电流、每级电压、调压范围等)。对yn接法的有载调压变压器所用有载调压分接开关而言,还要注意中点必须能引出.
下面从速度-转矩特性考虑要增加动态转矩的解决方法。增加转矩时,根据速度的高低,其解决方法各不相同。而解决方法既有电机方面的,又有驱动电路方面的。
1、在低速时增加转矩的方法
1)选择步距角小的步进电机
在低速时转矩随转子齿数增加而变大。选择步距角小的步进电机能获得高转矩。十几上hb型转子齿数如为50齿,*磁铁的漏磁将增加,但步会成比例,此结论在100齿以下均有效。三相hb型步进电机从1.2°(转子50齿)改变0.6°(转子100齿)。约增加1.4至1.8倍的低速转矩。
2)双较型接线
3)效率能盖上2倍。市场上很容易买到两相单较型或双较型步进电机,但双较型的驱动功率管比单较型的多。
2、步进电机在高速时增加转矩的方法
1)降低匝数,使l减小
在电机厂商的标准产品中选择电感l小的,额定电流会变大。
为保持低速时输入相同,改变绕组匝数饿两相hb型步进电机的速度-转矩特性的比较。在高速时,额定电流越大(安匝数相同,匝数少),电机转矩越大(电机为两相、hb型、1.8°、56mm、长54mm)。
2)*磁铁的磁通要小
如生产产无法减小*磁铁,可以增加气隙,使高速时降低反电势,增加电流,使转矩增大,使速度-转矩特性从低速到高速变成一条直线,提高高速时的转矩,同时响应频率也增加。
3)选择步距角打的电机。
3、步进电机高速运行时,在驱动电路方面提高转矩的方法
1)提高驱动电流的电压
要维持高速时的大转矩,就要保持电流不变,使斩波器工作在恒电流状态。要使电流恒定,只能提高脉冲频率。当步进电机如初转速达一定高的速度时,由于电压限制,只能工作在恒电压状态,如果提高输入电压,则可以使其在高速时依然能工作在恒电流状态,如果提高输入电压,则可以使其在高速时依然能工作在恒电流状态,从而提高高速时的转矩。
2)降低驱动电路关断时的电流
线圈内的电流在功率管关断时,由于电流变化率大,线圈内产生非常大的感应电压,功率管会有被击穿的危险,通常会有保护电路