SIEMENS浔之漫智控技术有限公司西门子6ES7515-2AN03-0AB0现货供应
PLC 控制系统配置如下:
分1#、2#PLC 主站。1#PLC 主站分别控制1#及2#锅炉焚烧炉;2#PLC主站分别控制汽机系统,制给水系统,废水处理系统,电气及其它部分。每个PLC 主站分别由两个CPU416-2DP(订货号:6ES74162XL010AB0)组成双机热备,通过实时冗余软件实现控制系统无扰动换,确保系统安全稳定运行,两个CPU 通过MPI 接口进行相互监视及数据相互备份,每个CPU 分别通过CP443-1 工业以太网通信模块与上位机通信。Siemens 的416CPU 组成双机热备,只能通过软件来实现,因此称之为软冗余,原则上CPU315 以上的CPU 都可以组成软冗余。用户必需自己编写冗余管理程序,把要冗余的数据放在特定的DB 里,每个扫描周期里主CPU 就把这些特定DB 里的数据影像到从CPU 中。软冗余比硬冗余有一个优点,就是开发人员可以自定义冗余数据库,这样就可以大大缩短在每个扫描周期中冗余数据的影像时间。
控制信号的输入及输出由相关ET200M 分布式I/O 模块完成,采用“就近原则”,以较大程度减少现场的硬布线,每个ET200M 分别有两块IM153-2 通信模块,分别与挂在DP 总线上,组成冗余的DP 总线。由于ET200M 采用是Siemens 300系列分布式I/O 模块,因此价格较为便宜。每个ET200M 可扩展8 个IO 模块,容量可高达128 字输入/128 字输出。较大传输速率为12Mbps。
这样,本控制系统就由于西门子400 系列的CPU416-2 组成双机热备,进行数据冗余,带上300 系列的分布式I/O 组成双冗余的DP 总线,这是性价比较高的集散控制系统,在今后的各种环保电厂主机控制及大型发电机组的辅机控制领域中的较大的推广**。
CPU416 具有非凡的性能,它二进制指令的执行时间为0.08 微秒(CPU417H为0.12 微秒),较大的数字量IO 或模拟量IO 高达65536 或4096 点。本集散控制系统有八千多条逻辑控制语句,30 个PID 控制回路,其中:带微分前馈控制的回路2 个;条件切换输出的回路10 个;三冲量调节回路2 个;单冲量调节回路26 个。系统实时性可靠性要求较高。
本集散控制系统中,PLC 完成全厂逻辑顺序控制及所有PID 回路控制。其中,
I、逻辑顺序控制分下列几大部分:
1)1-2-3 级吹扫 其目的是为了确保1-2-3 级燃烧室风烟系统相关设备正
常且信道畅通,是炉膛保护要求的重要操作。
2)引风机启动。
3)焚化炉—锅炉吹扫 其目的是为了确保焚化炉—锅炉整个风烟系统相关设备正常且信道畅通,是炉膛保护要求的重要操作。
4)*二级预热 其目的是为了提高*二级温度达到设定值,是**级预热、**燃烧室燃烧器投入的前提条件。
5)**级预热的目的是为了提高**级温度达到设定值。
6)顺序停运。
7)燃烧器顺序点火/停运。
8)给料系统自动循环。
9)除渣系统自动循环。
10)渣坑水位联锁控制。
11)吹灰系统顺序控制。
12)锅炉保护
13)主燃料跳闸
14)料油跳闸
15)正常发电模式
16)孤立运行模式
17)汽轮机故障模式
18)化学水处理控制
19)污水处理控制II、主要PID 控制回路略举如下:
1)炉膛压力调节系统(回路号:RL-PT101)
此系统为单冲量调节回路。按系统工艺,炉膛应保持一定的负压值
(PT101),故需对引风机(PV101)进行PI 调节。为防止引风机变频器运行过大或过小,而造成锅炉熄火,调节系统中引入高、低限幅模块。
2) 干燥炉排温度调节系统(回路号:RL-TE108)
此系统为单冲量调节回路。按系统工艺,进入焚烧炉一燃室1#炉排的垃圾含有一定的水分,直接影响炉膛温度,增加1~2#燃烧器的负担。
因此,从三燃室引入混合烟气进行干燥。由于三燃室混合烟气的温度较高,故通过调节干燥风机(TV108)使干燥炉排温度(TE108)维持在设定的工作范围。
3) 再循环烟气温度调节系统(回路号:RL-TE109)
此系统为单冲量调节回路。通过调节再循环风机(TV109)使四燃室烟气温度(TE109)维持在设定的工作范围。
4) 一燃区炉膛温度调节系统(回路号:RL-TE101)
此系统为条件切换多输出调节回路。按系统工艺,焚烧炉一燃室分为起炉运行和正常运行两个阶段。在起炉运行阶段,炉膛温度(TE101)主要由
#1~#6 燃烧器的燃油量来控制,通过调节#1~#6 燃烧器回油调节阀(HV107、HV111、HV117、HV121、HV127、HV131)来维持系统对炉膛温度(TE101)的要求。在正常运行阶段,炉膛温度主要靠#1~#4 炉排上垃圾的燃烧来维持,
通过调节#1~#4 炉排的排风调节阀(HV104、HV114、HV124、HV134)(因送风机转速一定,排风调节阀可调节送风量)来控制#1~#4 炉排上垃圾的燃
烧,从而达到系统对炉膛温度(TE101)的要求。此调节过程将直接影响炉膛负压,为防止炉膛负压的减少对系统的影响,当炉膛负压突破一定值时(如小于1Kpa),对排风调节阀限幅。
5) 锅炉汽包水位调节系统(回路号:RL-LT102)
此系统为三冲量调节回路。通过采用给水流量(FT101)、蒸汽流量(FT103)和汽包水位(LT102)主信号一起对给水调节阀(LV102)进行PI 调节,使汽包水位保持在设定范围内,以适应锅炉的蒸发量。
6) 过热蒸汽温度调节系统(回路号:RL-TE119)
系统将减温器后蒸汽温度(TE116)作为前馈信号引入调节,与过热蒸汽温度(TE119)主信号一起对减温水调节阀(TV119)进行PI 调节。
7) 汽机前压调节系统
此系统为条件切换输出调节回路。正常发电时,利用汽轮机与旁路系统平衡配置,通过汽轮机同步控制器调速汽门来调节主汽门前压力(PT302),使其稳定在工作压力左右。当发电机甩负荷时,控制旁路蒸汽调节阀(PV302),退出自动状态。
8) 减温减压器温度调节系统(回路号:RL-TE327)
减温减压器共有两项调节任务:调节喷水量维持减压后蒸汽温度在工作范围;调节减压阀的开度维持减压后蒸汽压力在工作范围。
本调节系统通过减温水调节阀(TV327)来调节减温减压器后温度
(TE327),使其稳定在工作温度左右。
9) 减温减压器压力调节系统(回路号:RL-PT325)
此系统为条件切换输出调节回路。在低负荷状态时,本调节系统通过调节蒸汽旁路调节阀(HV302)来维持减温减压器后压力(PT325),使其稳定在设定工作范围。当处于甩负荷状态时,调节系统来调节蒸汽调节阀(PV325)。
10) 低压分汽缸压力调节系统(回路号:RL-PT326-327)
此系统为双调节器条件切换单输出回路。低压分汽缸的蒸汽:在正常发电模式下来自汽轮机的抽汽;当发电机处于甩负荷状态或汽轮机故障状态时,则来自于主蒸汽经减温减压器后的一部分蒸汽(而另一部分蒸汽则进入高压冷凝器)。本调节系统根据系统要求,通过调节蒸汽调节阀来安全合理的分配这两部分蒸汽。
当高压蒸汽冷凝器的压力(PT327)小于0.2Mpa 时,调节系统通过调节蒸汽调节阀(PV326)来维持低压分汽缸压力(PT326),使其稳定在设定工作范围。当高压蒸汽冷凝器的压力(PT327)大于0.2Mpa 时,调节系统通过调节蒸汽调节阀(PV326)来维持高压蒸汽冷凝器的压力(PT327),使其稳定在设定工作范围。
11) 除氧器液位调节系统(回路号:RL-LT404)
此系统为条件切换输出调节回路。正常发电模式时,大量的凝结水由凝汽器通过低加直接送回到除氧器,不通过蔬水箱,除氧器的补给水通过调节进水调节阀(LV304_1),实现除氧器液位(LT404)的恒定。当汽轮机故障状态时,大量的凝结水从高压冷凝器聚到蔬水箱,除氧器的补给水则通过蔬水箱输送,除氧器液位(LT404)通过调节进水调节阀(LV304_2),实现液位的恒定。
该PLC 集散控制系统经两年多的运行证明,各项技术指标均达到**水平,主要表现如下:
(1)燃烧效率高 垃圾在炉排上与空气混合均匀燃烧充分,垃圾燃尽率高。
(2)回热效率高 余热锅炉分布在主炉膛和烟道中,可充分吸收垃圾燃烧热量, 正常燃烧热效率80%以上,即使水份很大的生活垃圾,燃烧热效率也在70%以上。
(3)处理垃圾范围广泛 能够处理工业垃圾、生活垃圾、医院垃圾废弃物、废弃橡胶轮胎等。
(4)运行维护费用低 炉排采用了整块设计维护量小;自动控制水平高,运行人员少。
(5)可靠性高 经过近2 年运行表明,此焚烧炉故障率非常低,年运行8000小时以上,利用率可达95%以上。
(6)排放物控制水平高 由于采用二级烟气再燃烧和**的烟气处理设备,使烟气得到了充分的处理。经长期测试,烟放物中CO 含量1—10 PPM,HC 含量2—3 PPM,NOx 含量35 PPM,完全符合欧美排放标准。烟气在二、三级燃烧室燃烧时温度达1000℃,并且停留时间达2 秒以上,可使基本分解,烟气中的含量为0.04 ng/m3,远**欧美标准0.5 ng/m3。
与同规格的伺服阀相比,比例阀的成本大约是其50%。然而,伺服阀依然应用在具有精密位置控制和速度控制的场合,诸如航空,航天和汽轮机等。
比例阀可用于流量和压力控制,但是大多数情况下还是作为方向控制阀。尽管比例方向阀的设计会因不同厂商而已,但它们基本上都是完成同样一种功能:控制液压缸或马达的方向和速度。通过使用反馈装置诸如线性位移传感器或者旋转编码器,执行器的位置可以被精确控制。
直动式比例方向阀
直动式方向阀用于流量大约至100L/min或较少的场合。两级阀,其集成了先导阀和主级阀,用于有较高流量要求的场合。
为了诊断比例阀和系统,你必须能够正确的解读液压系统原理图。图1,显示的是直动式比例方向阀。注意符号中的四个方框,它们代表阀芯能够移动的工作位置数量。当阀线圈没有供电时,弹簧推动阀芯至较左边。这就是所谓的“故障安全“位。在此条件下,通过阀的所有流量被阻止
此时,阀芯将移至平行位工作。这个位置通常称作“A”位。电流升高,导致阀芯移动,直至LVDT反馈-6V的电压信号。阀芯将停止移动并保持。油液经过阀芯并进入液压缸的无杆腔。
液压缸的运动速度取决于阀芯的移动量。在这个例子中,如果阀较大流量是38L/min,当指令电压为6V时,则大约有23L/min的油液流经阀芯。
当液压缸运动时,位移传感器发送一个模拟的或者数字的反馈信号至PLC。例如,如果每运动0.0254mm发送一个数字脉冲至PLC,活塞杆运动直至得到12000个的脉冲反馈,表明运动了305mm。指令电压接着降为零,比例阀阀芯再次运动至“电气关闭”位置。液压缸保持位置,直至改变指令移动至新的位置之前。