工业氧气安全技术说明书
部分:化学品名称
化学品中文名称: 氧
化学品英文名称: oxygen
中文名称2: 氧气
英文名称2:
技术说明书编码: 83
CAS No.: 7782-44-7
分子式: O2
分子量: 32.00
第二部分:成分/组成信息
有害物成分:氧
含量: ≥99.99%
CAS No. 7782-44-7
第三部分:危险性概述
危险性类别:
侵入途径:
危害: 常压下,当氧的浓度超过40%时,有可能发生氧中毒。吸入40%~60%的氧时,出现胸骨后不适感、轻咳,进而胸闷、胸骨后烧灼感和呼吸困难,咳嗽加剧;严重时可发生肺水肿,甚至出现呼吸窘迫综合征。吸入氧浓度在80%以上时,出现面部肌肉抽动、面色苍白、眩晕、心动过速、虚脱,继而全身强直性、昏迷、呼吸衰竭而。长期处于氧分压为60~100kPa(相当于吸入氧浓度40%左右)的条件下可发生眼损害,严重者可失明。
环境危害:
燃爆危险: 本品助燃。
第四部分:急救措施
皮肤接触:
眼睛接触:
吸入: 迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸停止,立即进行人工呼吸。就医。
危险化学品安全技术说明书
物化性质
折叠物理性质
无色无味气体,熔点-218.8℃,沸点-183.1℃,相
氧气瓶
对密度1.14(-183℃,水=1),相对蒸气密度1.43(空气=1),饱和蒸气压506.62kPa(-164℃),临界温度-118.95℃,临界压力5.08MPa,辛醇/水分配系数:0.65。 大气中体积分数:20.95%(约21%)。
化学性质
氧气的化学性质比较活泼。除了稀有气体、活性小的金属元素如金、铂、银之外,大部分的元素都能与氧气反应,这些反应称为氧化反应,而经过反应产生的化合物(有两种元素构成,且一种元素为氧元素)称为氧化物。一般而言,非金属氧化物的水溶液呈酸性,而碱金属或碱土金属氧化物则为碱性。此外,几乎所有的有机化合物,可在氧中剧烈燃生成二氧化碳与水。化学上曾将物质与氧气发生的化学反应定义为氧化反应,氧化还原反应指发生电子转移或偏移的反应。氧气具有助燃性,氧化性。
甲烷、乙炔、酒精、石蜡等能在氧气中燃烧生成水和二氧化碳。
气态烃类的燃烧通常发出明亮的蓝色火焰,放出大量的热,生成水和能使澄清石灰水变浑浊的气体。
在空气中燃烧,发出微弱的淡蓝色火焰;在纯氧中燃烧得更旺,发出蓝紫色火焰,放出热量,生成有性气味的气体 。该气体能使澄清石灰水变浑浊,且能使酸性溶液或品红溶液褪色,褪色的品红溶液加热后颜色又恢复为红色。硫在氧气中燃烧
分子结构
O₂分子内的化学键通常是共价键。
从实验上来说,顺磁共振光谱O有顺磁性,还O有两个未成对的电子。说明原来的以双键结合的氧分子结构式不符合实际。
氧气的结构如右图所示,基态O₂分子中并不存在双键,氧分子里形成了两个三电子键。
氧的分子轨道电子排布式是
氧气的结构
氧气的结构
,在π轨道中有不成对的单电子,所以O₂分子是所有双原子气体分子中的一种具有偶数电子同时又显示顺磁性的物质。
两个氧原子进行sp轨道杂化,一个单电子填充进sp杂化轨道,成σ键,另一个单电子填充进p轨道,成π键。氧气是奇电子分子,具有顺磁性。
单线态氧和三线态氧
普通氧气含有两个未配对的电子,等同于一个双游离基。两个未配对电子的自旋状态相同,自旋量子数之和S=1,2S+1=3,因而基态的氧分子自旋多重性为3,称为三线态氧。
在受激发下,氧气分子的两个未配对电子发生配对,自旋量子数的代数和S=0,2S+1=1,称为单线态氧。
空气中的氧气绝大多数为三线态氧。紫外线的照射及一些有机分子对氧气的能量传递是形成单线态氧的主要原因。单线态氧的氧化能力高于三线态氧。
单线态氧的分子类似烯烃分子,因而可以和双烯发生狄尔斯-阿尔德反应。
应用焊药的目的,一方面是为了避免在焊接过程中,高温金属和氧气化合形成氧化物(特别是有色金属和合金钢),另一方面是为了金属中已经形成的氧化物。如果这些氧化物不除掉,容易使这些氧化物夹杂到焊缝金属中去,使焊接接的强度降低、或焊接得不牢或焊接得不严实,并且会形成不整洁的焊迹。
焊药的作大体有两大类:一类是起化学分解或中和作用的熔剂,一类是起物理溶解作用的熔剂。它们的作用性质不同,这要根据不同金属所产生的不同性质的氧化物,使用不同性质的熔剂来中和它或熔解它。
起化学中和作用的一类焊药是由一种或几种酸性氧化物或碱性氧化物或碱性盐类所组成的,故这类焊药是分为酸性的和碱性的两种。究竟要选用那种,要根据被焊接金属所产生的氧化物是酸性的还是碱性的来确定。例如焊接铜及铜合金时,所产生的氧化铜是碱性的氧化物,因此一般铜焊都要使用到硼砂作为焊药,用硼砂焊药中和后形成低熔点盐类的熔渣。又如焊接铸失时因含硅量多,焊接的过程一部分硅被燃烧氧化成为酸性氧化物,因此可采用属于碱性的碳酸钠或碳酸钾等作为焊药来中和它,也同样使之变成为低熔点盐类熔渣。
焊接铝及铝合金时,在熔池表面上表面上形成熔点很高的一层氧化铝,而这些氧化铝不能用酸性或碱性焊药来掉,而必须使用到铝焊药。铝焊药是由一些氯化物(如、、氯化锂)氟化物(如氟化钠、氟化钾)的混合物组成的,这些焊药的作用是起到物理溶解作用来氧化铝,使焊缝金属接头纯洁。
(3)割的使用方法:
“气割”是利用氧块焰先把准备切割的钢铁件的切割处烧到红热程度,然后吹入高压纯氧气流,使被切割的部分在氧气中剧烈燃烧,熔化成液体,并被气流冲掉,从而达到切割目的。
“割”是气割所使用的主要工具。
“割”跟“焊”不同之处,是多了一根纯氧气流喷射管和多一个节门,其余的构造原理跟焊大体相似。
“割”的使用方法:先拧开乙炔气开关,并稍微拧开些氧气开关,点燃后,调节氧气的供应量,使氧炔焰成为中性焰,(即乙炔与氧气量适当)。切割时先用这氧炔焰把准备切割的某一点上烧到红热,再拧开高压纯氧气流开关,使金属在氧气流中剧烈燃烧熔化成液体,冲掉,然后将割沿着准备切割的线移动,将金属切割掉。
切割时,对割的倾斜角度,切割速度和氧气压力等都有要求。
割倾斜度主要跟工件的厚度有关。当切割5~20mm厚的钢板时,割垂直于工件,不必倾斜。割放得直,切割的质量越好,割缝也越小。当要切割小于5mm厚度工件时,可向前倾斜来割。如果切割厚度超过30mm的工件,则割应当向后倾斜来割,待到割透后,边移动割,边把割逐浙变成垂直于工件来割,而等到快割到头时,再将割稍向里倾斜,直到割完。
切割速度的快慢要看工件的厚度来定,工件越薄,快些,反之该慢些。
供给高压氧气流的压力的大小也跟切割工件厚度有关。如果氧气供给不足,则切不透;而如果压力过大,又将造成浪费氧气。
切割完毕时,先关上高压氧气流开关,然后关上乙炔气开关,等把氧炔焰吹灭后,再关上氧气开关。
舍勒对氧气的发现
1772年,舍勒对空气进行研究后,他先认识到氧气是空气的一种重要成分。他用和铁粉混合,在空气中燃烧,消耗掉钟罩中空气中的氧气而制得氮气,当时他称它为“浊气”或“用过的空气”,或能使人的气体。
经过思索,舍勒明白了,原来当时人们认为空气是一种元素的观点是错误的。他猜想:空气是两种不同物质的混合,一种是浊气,能使人的空气;一种是能使人活命的空气,能帮助燃烧,在燃烧中消失。于是,舍勒产生了兴趣,并开始了他的实验。
1773年,他把硝石(KNO3)装进曲颈瓶,瓶口系一个排完空气的猪膀胱,再把曲颈瓶放到火炉上去烧。硝石融化时分解,放出一种气体,很快把猪膀胱充满了,这种气体正是那种能活命的气体,即现在所知道的氧气。
舍勒进行了仔细的鉴别,他把红热的木炭扔到充满“能活命的气体”的瓶中,木炭迅速燃烧,光亮耀眼,比在普通空气中燃烧得更快更亮。舍勒将1/5的这种气体和4/5浊气混合于瓶中,蜡烛能正常燃烧,老鼠也同在普通空气中一样呼吸。由此他确定这种气体是一种纯净的能活命的气体。
舍勒给这种气体命名为“火空气”,因为他发现除硝石外,加热、、碳酸银、碳酸汞,均能释放出氧气来。
东莞市灏达焊接材料店从事多种气体的制备、营销和现场服务,能根据客户需求进体产品的研究开发,自2006年诞生以来,拥有雄厚的专业技术力量和物流服务,具有十多年气体销售经验和广泛的销售市场。现已形成以工业特种气体、大宗混合气体、标准气体、各种气体管道工程等四大类产品和训练有素的员工队伍,积累了一定的气体制造和供气服务经验。 灏达经销的化学工业气体包括各种纯度和规格,如:、氧气、氮气、氩气、氦气、、氨气、干冰、等;特种气体包括各种纯度和规格,如:六氟化硫、四氟化碳、、五氟化磷、五氟化锑、四氟化硫、四氟盐、三氟甲烷、三氟化氮、磷烷、、、五氟化碘、氖气、氟气、气、、P10氩甲烷混合气等;气体管道服务对象,化工企业、电子半导体行业、太阳能光伏、学校、科研机构、海关、检验检疫中心等等;还可以按客户的要求配制各种混合气,如:高纯空气、氟氮混合气、氧氦混合气、硅烷加氢混合气、氩保气、氧氩混合气等。 我们秉承“一切为了用户”的宗旨,只要用户的需要,都要做到使用户满意。对于有特殊要求的气体配制、钢瓶阀门或接口加工、气体管道等按装服务,我们都有一些长期合作的专业厂家和团队为之服务。销售产品广泛应用于电子、不锈钢、光纤光缆、太阳能电池、有色金属、化工行业、香精香料、医、玻璃及电力行业。客户只要一个电话、一份传真(订单),您需要的货物就会按照您的要求,如期而至送到您的手上! 灏达所销售商品,质量保证价格合理,具备各种生产和销售资质。服务上乘,交货及时,做到快速反应、及时回访、技术咨询、操作培训、客户投诉处理,为客户提供安全可靠的生产运行保证。