传递路径分析(Transfer Path Analysis, TPA)方法研究的是系统的传递特性。对一个系统来说,当它受到一个激励F后必然产生一个响应P,那么表征系统这种激励一响应关系的特性就是系统的传递函数。它是表征系统这种激励和所有响应之间的对应关系的传递特性的数学表达式。在实际中,复杂的机械系统一般都会受到多种多个振动噪声源的同时激励,每种激励都会通过机械系统上的不同的传递路径,经过能量的衰减传递到系统中多个响应点。通常传递路径方法是通过试验的方式来研究和掌握机械系统的传递特性。当机械系统受到多个激励时,就可以通过已经得到的该系统的振动传递特性与激励的乘积来计算或者预测系统的响应。
传递路径分析方法的意义不仅在于预测系统响应,较重要的是,当振动和噪声响应**过标准时,工程人员能够找出关键路径,从而有的放矢地改进设计。对一种特定现有车型,一旦整车传递路径分析模型建立起来,那么在研发新车型时就能够有性的进行设计。对于需要减振降噪车型,还可将传递路径分析方法与数值计算方法相结合,将计算得到的新结构特性函数代入模型中,通过预测到的系统响应来辨识结构修改的好坏。
在国外,TPA 技术经过15 的发展已经在NVH 领域已经趋于成熟并还在继续发展,很多整车制造商和研究机构对TPA 技术进行了大量的研究及改进工作,**了很多科研成果并发表了很多学术,尤其是比利时LMS 公司开发出来的测试及分析系统使得该项技术能够简单地被在工程实际中应用,在世界范围内较大地推广了该项技术及理念。主要为传统TPA (Conventional TPA)、多级TPA、快速TPA、以及工况TPA 等。不同的方法具有不同的优缺点以及适用范围,使用时应该根据具体情况来选择不同的传递路径分析方法,同时在处理数据中需要认真,尤其在应用工况TPA 方法的过程中。
TPA模型计算用到的频响函数包括路径点到载荷参考点的频响函数以及路径点到目标点的频响函数。使用的频响函数的类型根据分析目标点的响应类型的不同而不同。对目标点的振动进行建立模型分析时,选取频响函数的类型一般是目标点的加速度响应对路径点载荷力的频响函数;而当研究目标点响应为声压时,路径点到目标点的频响函数是目标点声压对路径点的载荷力的频响函数。
当选择间接方法求解路径工作载荷时,路径点到载荷参考点的频响函数是载荷计算模型的重要组成部分。在计算工作载荷的时候,计算模型不仅对频响函数的准确度要求很高,同时还要求不同路径与参考点之间的频响函数之间的线性度有着不同的要求,所以,频响函数的好坏直接影响到载荷计算的准确度。
被动体上路径点到目标点的频响函数直接用于路径贡献的计算,频响函数的准确性不仅对TPA分析计算结果有决定性的影响,而在完成TPA计算后,频响函数是系统优化的重点考虑对象。所以TPA模型对频响函数有着相当高的要求,频响函数的质量直接决定了TPA模型计算结果的准确度。
对于线性时不变振动系统而言,系统的频响函数是系统的传递特性的描述,包含着系统的刚度和阻尼等信息,是系统固有属性的描述,决定了激励在系统中的传递情况,与外界激励无关;由本章上述理论可知,振动系统的频响函数等于系统的输出与输入在频域上的比值,这为频响函数的实验测量提供了理论依据。
实验频响函数的获取方法一般通过外界激励系统给物理结构一个外部激励,然后测量拾取系统上某点的响应信号,对激励信号和响应信号在频域上进行处理后得到频响函数。激励系统有激振器和力锤两种,实验时根据实验要求的精度以及实验成本进行选择。在使用力锤敲击法测量频响函数时,为了减少测量误差,得到较为准确的频响函数,在保证系统响应与激励信号的相干系数较高前提下,一般进行多次敲击然后取平均值。随着现代测量技术以及信号处理技术的不断发展,系统频响函数的测量精度得到了不断的改进。
声学材料的设计与测试方法培训内容:
一、吸声材料的设计与测试方法
1.1 多孔吸声材料的设计
1.2 共振型吸声结构的设计方法
1.3 吸声的测试各种方法、对比和误差分析
1.4 吸声降噪的应用
二、的设计与测试方法
2.1 阻型的设计方法
2.2 抗性的设计方法
2.3 的测试和评价方法
2.4 的应用
三、隔振与减振理论和技术
3.1 隔振的基本理论
3.2 隔振效果影响因素
3.3 振动的测试与隔振系统的评价
3.4 动力吸振技术
3.5 常用隔振器及其应用
四、 隔声材料的设计与测试方法
4.1 单层板隔声的隔声特性
4.2 复合隔声材料的设计方法
4.3 空气隔声的测试方法
4.4 空气隔声的评价
五、 阻尼材料的设计与测试方法
5.1 粘弹阻尼材料产生机理和配方工艺
5.2 粘弹阻尼材料的性能测试
5.3 附加阻尼结构的理论计算
5.4 约束阻尼结构的应用与设计
振动噪声基本原理与控制方法培训内容
一、单自由度的振动
1.1 无阻尼自由振动特性
1.2 有阻尼自由振动特性
1.3 单频稳态振动
1.4 周期强迫振动
1.5 非周期激励
1.6 冲击的响应
1.7 随机激励
二、多自由度系统的振动
2.1 无阻尼多自由度系统的频响函数分析
2.2 有阻尼多自由度系统的频响函数分析
2.3 子系统综合法
2.4 结构动态特性灵敏度分析
2.5 传递路径分析技术概述
三、一维连续系统的振动特性
3.1 一维连续系统的振动特性
3.2 一维连续系统的强迫振动
3.3 梁(棒的横向)振动
3.4 结构有限元的基本理论
四、二维连续系统的振动
4.1 弹性力学的基本理论
4.2 圆膜的振动
4.3 薄板的弯曲振动
4.4 结构强迫振动的分析方法
4.5 随机激励作用下结构响应
4.6 声波在各向同性固体中的传播
五、理想流体中声波的基本性质
5.1 一维理想流体媒质中的声波方程和声场特性
5.2 三维声波
5.3 平面界面上声波的反射与透射
5.4 电-力-声类比
六、结构振动的声
6.1 脉动球源及其组合的声场
6.2 亥姆霍兹积分公式及其应用
6.3 振幅非均匀分布面的
6.4 结构振动与声耦合
七、声波的散射、接收和评价
7.1 声波的散射
7.2 声波的接收——传声器和声强原理
7.3 声阵列的基本原理
7.4 噪声的主观评价
八、声波在受限空间的传播
8.1 声波在等截面管道中的传播
8.2 声波在变截面管道中的传播
8.3 封闭空间的简正模式
8.4 扩散声场的特性及其应用
九、 振动声学的高频分析方法
9.1 射线声学
9.2 统计能量分析基本原理
9.3 内损耗因子
9.4 耦合损耗因子
9.5 系统动力响应估计
9.6 混合分析方法
十、振动噪声仿真分析
10.1 声学有限元和边界元基本理论
10.2 声线基本理论
10.2 声学有限元、边界元和声线仿真分析典型应用
10.3 气动声学基本理论和仿真分析
南京同韵声学科技有限公司成立于2013年,主要是为各类工业设备和家用电器的噪声问题开展系统和完整的噪声控务,即针对各类产品的噪声,开展噪声测试分析,降噪方案设计,声学材料设计以及降噪方案实施和评价,系统完整的解决该产品的噪声问题。 公司目前已成立了一支由声学博士为**的技术研发队伍,已发表多篇学术论文和**申报。公司于2013年度获得南京*型科技创业计划,于2015年通过首届江苏省社会信用管理贯标验收。公司现与同济大学和*科技大学等相关院系建立了良好的合作关系。公司技术特点在于: 1)具备深厚的振动噪声理论和测试经验,可开展系统的噪声与振动控制理论和测试技术等培训。 2)具备大量的工业设备和家用电器等项目噪声控制经验。 3)具备吸声材料、隔声材料和阻尼材料的设计能力以及丰富的声学材料数据库。 4)已建成LMS 12+ 振动噪声掌上采集和分析系统、B&K PULSE 振动噪声采集和输出系统、B&K 声强探头、B&K 传声器校准系统和B&K PULSE振动噪声分析软件。