声学是一门具有广泛应用性的学科,涉及到人类生产、生活及社会活动的各个方面;同时声学又是一门具有很强交叉渗透性的学科,与各种新学科、新技术相互作用,相互促进,不断地吸收、应用和发展新的思想,增强了声学的生命力、竞争力和学术与艺术魅力。本文从科学、技术与艺术等几个方面,介绍了声学的学科发展,特别是在科学与技术上的新的研究方向与进展。
声学材料的设计与测试方法培训目的:
掌握吸声材料的设计方法和测试方法
掌握的设计方法与测试方法
掌握隔声的设计与测试方法
掌握阻尼材料的设计与测试方法
路径点的工作载荷获取方法有直接法和间接法。假设工作载荷是载荷力,直接法就是用力传感器在路径点直接测量工作状态下的路径点力的大小而得到;间接法则是通过计算的方法间接得到路径点载荷力。在做TPA分析时,一般采用的方法是间接法获取路径点载荷。获取载荷的间接方法主要有复刚度法(也称动刚度法)和逆矩阵法,工作载荷的获取方法的选择要根据系统的实际结构。对同一TPA模型进行分析时,一般同时根据多种不同的载荷获取方法获取载荷,对不同方法得到的结果综合考虑,验证计算的准确度。下一节则介绍常用的两种间接方法,即复刚度法和逆矩阵法。
复刚度法的计算分析模型如图2.5.1所示。图中主动方与被动方中间通过刚性杆或者是弹性件连接,耦合连接件与主动方和被动方的两端连接处都产生响应X,通过实验可以得到中间耦合件与主动方体和被动方连接处的不同方向的振动响应大小,它可以是位移x(ω),也可以是加速度a(ω);同样通过实验可以测量得到中间不同耦合件的复刚度曲线函数,则被动方体端的路径点载荷可以根据复刚度法计算得到的不同路径的复刚度函数Ki(ω)以及两端的振动量(位移或加速度等),代入式(2.5.9)可以求出路径点的载荷Fi(ω),这就是复刚度法间接求解路径载荷的原理。但是当被动方与主动方之间的连接件的刚度比较大时,连接件两端的产生的振动差值较小,实验测量误差较大。在这种情况下,复刚度法计算得到的载荷值与实际值误差就可能存在很大的差值,导致后TPA计算结果的错误。所以复刚度法在连接耦合件的刚度较大时不宜采用。这时逆矩阵法则是求解路径载荷另一较为有效的求解方法。
由析可得,载荷力向量等于路径点到参考点的频响函数组成的频响函数矩阵的逆矩阵与参考点的响应信号相乘得到,路径点到参考点的频率响应函数组成的计算矩阵通常也称为载荷计算矩阵。使用逆矩阵法计算求出路径载荷,载荷计算矩阵和参考点的响应信号是必须,这两者都可以通过实验的方法得到。
同时要求出确定的载荷力列向量,至少要有m=n使载荷计算矩阵是一个方阵,载荷计算矩阵的行列式不为零,方程组有解,才能按照线性方程组求解理论求出一组路径载荷力列向量。由于频响函数属于同一个结构系统,各个频响函数中包含的结构信息存在着很大的相似性,当选择的参考点位置不合理时,不同路径到参考点频响函数的相似度较大,也就是频响函数矩阵的某个路径点到某个参考点的频响函数的形状很相似,当参考信号的个数等于路径载荷个数时,其中的某些行向量线性度很高,载荷计算矩阵可能存在病态问题,求解频响函数的逆矩阵误差较大,或者说频响函数的逆矩阵不存在,后求不出载荷力向量。这种情况下需要重新选取不同的参考点的组成载荷计算新模型。所以,为了减少实验的重复次数,在初确定参考点的个数时,一般要求m>n。然而当m>>n,意味着实验成本的增加。所以m的选择要根据问题的具体情况而定,一般采用m=2n,而后采用小二乘的办法,优化得到系统的传递函数矩阵。
隔振的目的是为了减小振动的传递。对于工程实践中具体的隔振设计而言,人们关心的无疑是通过隔振,被保护对象的振动量级获得了多大程度的衰减或控制。在隔振设计时,对系统的结构参数优化设计一般是围绕隔振效率展开的。因此,效果评估指标的确定是效果评估体系的**内容。完整的效果评估体系应包含两方而的内容:一是对系统的隔振效果进行理论分析预测;其次则是对实际隔振效果进行测定。日前常用的隔振效果评估指标有力传递率、插入损失、振级落差、功率流等。一般以力传递率作为隔振效果的理论预测依据。但是对于实际效果的测定,由于力传递率是不易测量的,因而通常采用插入损失或振级落差来评定各种实际系统的隔振效果。
南京同韵声学科技有限公司成立于2013年,主要是为各类工业设备和家用电器的噪声问题开展系统和完整的噪声控务,即针对各类产品的噪声,开展噪声测试分析,降噪方案设计,声学材料设计以及降噪方案实施和评价,系统完整的解决该产品的噪声问题。 公司目前已成立了一支由声学博士为**的技术研发队伍,已发表多篇学术论文和**申报。公司于2013年度获得南京*型科技创业计划,于2015年通过首届江苏省社会信用管理贯标验收。公司现与同济大学和*科技大学等相关院系建立了良好的合作关系。公司技术特点在于: 1)具备深厚的振动噪声理论和测试经验,可开展系统的噪声与振动控制理论和测试技术等培训。 2)具备大量的工业设备和家用电器等项目噪声控制经验。 3)具备吸声材料、隔声材料和阻尼材料的设计能力以及丰富的声学材料数据库。 4)已建成LMS 12+ 振动噪声掌上采集和分析系统、B&K PULSE 振动噪声采集和输出系统、B&K 声强探头、B&K 传声器校准系统和B&K PULSE振动噪声分析软件。