边缘设备智能化的基本要求
将计算基础架构从数据中心扩展到边缘这一主张,得到了越来越广泛的共识。诸如联邦学习之类的概念,通过共享的预测模型进行协作学习这种方式,将标准集中式机器学习(ML)方法从数据中心转移到手机——在将数据存储到云的需求中,消解了对可实现ML能力的要求。5而各种深度神经网络(DNN),每天都在发展、以更好地赋能基于边缘的处理功能。成功地将智能带到边缘设备也带来了与传统的AI不同的商机——例如:个性化购物,移动边缘计算卡,基于AI的助手;或在制造设施中进行预测分析。边缘/雾计算的应用,比如:车辆的自动驾驶;需要复杂反馈机制的机器人技术的远程控制;甚至是使用ML、可更好地管理可再生能源的智能电网终端设备;以及在电网中对本地电能使用进行预测分析。对于此类应用,成功实施AI的主要决定因素包括:成本效益低功耗可重构性/灵活性尺寸
边缘计算
边缘计算并非是一个新鲜词。作为一家内容分发网络CDN和云服务的提供商AKAMAI,早在2003年就与IBM合作“边缘计算”。作为世界上很大的分布式计算服务商之一,FPGA边缘计算卡,当时它承担了15-30%的网络流量。在其一份内部研究项目中即提出“边缘计算”的目的和解决问题,并通过AKAMAI与IBM在其WebSphere上提供基于边缘Edge的服务。
对物联网而言,边缘计算技术取得突破,意味着许多控制将通过本地设备实现而无需交由云端,处理过程将在本地边缘计算层完成。这无疑将大大提升处理效率,黑龙江边缘计算卡,减轻云端的负荷。由于更加靠近用户,还可为用户提供更快的响应,将需求在边缘端解决。
边缘计算的应用
目前边缘计算应用非常广泛,特别适合具有低时延、高带宽、高可靠、海量连接、异构汇聚和本地安全隐私保护等特殊业务要求的应用场景。
智慧城市
智慧城市是利用先进的信息技术,网关边缘计算卡,实现城市智慧式的管理和运行。2016 年阿里云提出了“城市大脑”的概念,实质是利用城市的数据资源来更好地管理城市。然而,智慧城市的建设所依赖的数据具有来源多样化和异构性的特点,同时涉及城市居民隐私和安全的问题,因此应用边缘计算模型,将数据在网络边缘处理是一个很好的解决方案。
智能制造
智能制造是边缘计算在物联网中非常典型的应用领域,借助于边缘计算将促进 IT 和 OT 系统的深度融合。工业机器人是实现智能制造的基础,近几年工业机器人在中国市场呈现蓬勃发展的趋势。据统计,2016 年中国市场工业机器人消费总量达 87000 台,接近世界销量的近三分之一,是世界上很大的工业机器人市场。工业机器人的应用领域主要集中在汽车制造、3C 行业、物流、金属加工、塑料和化工等行业,通过机器人完成搬运和上下料、装配和拆卸、焊接等工作环境恶劣、自动化/执行精度和安全程度要求非常高的工作场景。工业机器人需要具备应对复杂的现场环境并结合当前工作流程进行综合分析和判断的能力,以及与其他机器人协作完成复杂工作任务的能力。
智能家居
在当前的智能家居中,智能家电设备基本上都是由智能单品构成的,比如密码锁、智能照明、智能空调、安防监控、智能卫浴、室内环境监控、家庭影院多媒体系统等,这些智能家电设备需要依赖于云平台才能实现手机端在外网的远程控制。这种基于云平台的智能家居在网络出现故障时将无法进行控制,特别是多个智能单品联动的场景将无法对多个设备进行协调。
黑龙江边缘计算卡-速核电子公司-移动边缘计算卡由北京速核电子科技有限公司提供。北京速核电子科技有限公司为客户提供“高速数据采集”等业务,公司拥有“鲁科数据”等品牌,专注于仪器仪表等行业。,在北京市海淀区安宁庄路26号楼8层802房1号的名声不错。欢迎来电垂询,联系人:白利。
速核电子,致力于智能采集终端产品的研发与销售,产品应用于高速数据采集、电力领域智能电子设备。此外,公司提供数据采集项目和产品的定制开发与服务。团队成员具备业内多年的产品开发经验,拥有成熟可靠的产品平台,有能力提供可靠的产品和服务。