图像处理技术:运用图像处理技术解决汽照识别的研究早始于80年代,但国内外均只是就车牌识别中的某一个具体问题进行讨论,并且通常仅采用简单的图像处理技术来解决,并没有形成完整的系统体系,识别过程是使用工业电视摄像机拍下汽车的工前方图像,然后交给计算机进行简单的处理,并且终仍需要人工干预,例如车辆牌照中省份汉字的识别问题,1985年有人利用常见的图像处理技木方法提出汉字识别的分类是在抽取汉字特征的基础上进行的,根据汉字的投影直方图选取浮动闭值,抽取汉字在竖直方向的峰值,利用树形查表法进行汉字的粗分类;然后根据汉字在水平方向的投影直方图,选取适当闭值,进行量化处理后,形成一个变长链码,再用动态规划法,求出与标准模式链码的小距离,实现细分米完成汉字省名的自动识别。
传统模式识别技术。传统模式识别技术指结构特征法,统计特征法等。90年代,由于计算机视觉技术的发展,开始出现汽照识别的系统化研究。1990年AS.Johnson等运用计算机视觉技术和图像处理技术实现了车辆牌照的自动识别系统。该系统分为图像分割、特征提取和模板构造、字符识别等三个部分。利用不同闽值对应的直方图不同,经过大量统计实验确定出位置的图像直方图的闽值范围,从而根据特定闽值对应的直方图分割出,再利用预先设置的标准字符模板进行模式匹配识别出字符。
人工网络技术。近几年来,计算机及相关技术发达的一些国家开始探讨用人工网络技术解决自动识别问题,例如1994年M.M.M.FANHY等就成功地运用了BAM网络方法对上的字符进行自动识别,BAM网络是由相同元构成的双向联想式单层网络,每一个字符模板对应着个BAM矩阵,通过与上的字符比较,识别出正确的号码。
这种采用BAM网络方法的缺点是无映解决识别系统存储容量和处理速度相矛盾的问题。
号码识别
为了进行车牌识别,需要以下几个基本的步骤:
1、 牌照定位,定位图片中的牌照位置;
2、牌照字符分割,把牌照中的字符分割出来;
3、牌照字符识别,把分割好的字符进行识别,终组成牌照号码。
车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。
车牌识别技术是现代智能交通系统重要组成部分,其应用十分广泛。它以计算机视觉处理、数字图像处理、模式识别等技术为基础,对摄像机所拍摄的车辆图像或者视频图像进行处理分析,得到每辆车的号码,从而完成识别过程。通过一些后续处理技术其可以实现停车场出收费管理、盗抢车辆管理、高速公路超速自动化管理、闯红灯电子、公路收费管理等等功能。对于维护交通安全和城市,防止交通堵塞,实现交通全自动化管理有着现实的意义。
一个车牌识别系统的基本硬件配置是由摄像机、主控机、采集卡、照明装置组成。而软件是由一个具有车牌识别功能的图像分析和处理软件,以及一个满足具体应用需求的后台管理软件组成。
车牌识别系统于是出现了两种产品形式,一种是软硬件一体,或者用硬件实现识别功能模块,形成一个全硬件的车牌识别器,例如DSP。另外一种形式是开放式的软、硬件体系,即硬件采用标准工业产品,软件作为嵌入式软件。两种产品形式各有优缺点。开放式体系的优点是由于硬件采用标准工业产品,运行维护容易掌握,备品备件采购可以从任何一家产商获得,不用担心因为一家产商倒闭或供货不足而出现产品失效或采购困难。而软硬件一体式产品,对于使用者操作产品时更易操作及控制。对于后期的维护调试也更易于掌握。
大连安宇嘉电子科技,是一家致力于弱电系统设计、安装、维护的企业。 公司自成立以来一直从事包括视频监控、远程监控、门禁系统、人行通道闸系统、停车场管理系统、水控系统、电梯控制系统、防盗报警系统、视频会议、公共广播、楼宇对讲、 电子显示屏等多项智能建筑弱电系统的工程设计、安装、维护、保养、维修等。应用领域包括:机关、银行、公共交通、体育场馆、学校、商场超市、小区、工厂、场所及公共建筑设施场所。公司建立了一支在安防领域具有深厚技术力量的施工队伍,同时拥有一批丰富知识的售后服务人员。经营理念:诚信、敬业、求实、创新;管理理念:以人为本、科学管理;服务理念:用户至上、信誉 ......