众所周知,二氧化碳激光器和高功率光纤激光器广泛应用于传统的金属/钣金切割,但北京华诺恒宇激光精密切割事业部的激光切割,主要专注于微观精密加工,因此致力于中小型功率的激光切割,在细微尺度、精密程度和切割质量等方面不断前进和超越,我们的切割效果具有:热影响区域小,度高,边缘质量好,应用材料广等优点。对陶瓷,硅,蓝宝石,薄金属片,玻璃等材料,我们能够进行高质量的精密切割、打孔加工。
首先分析超声加工硬脆陶瓷材料的实际意义,再对目前陶瓷材料的加工理论基础和工艺手段进行总结,以实际加工运动过程为基础,结合压痕断裂力学理论分析纵扭复合振动超声加工陶瓷材料破碎去除机理,搭建试验平台,以加工过程物理量磨削力的变化规律和加工材料表面形貌分析材料去除过程机理,与理论相结合,丰富振动输出模式,满足陶瓷材料高精密的加工要求,主要研究方法和结论如下:1、首先通过总结目前关于陶瓷材料加工机理研究的理论基础和存在的加工工艺手段的优劣性,得到复合振动超声对加工陶瓷材料具有一定的优越性,并对复合振动超声加工在硬脆类材料上的研究应用进行归纳,确定了纵扭复合振动超声加工对陶瓷材料的工艺优势;
采用一种基于气熔比控制的激光精密切割方法,研究了气熔比和板厚对激光切割氧化锆陶瓷板质量的影响,即气熔比对切缝质量,切面条纹形貌及粗糙度的影响.对气熔别为0.099,0.160,0.184和0.202的4组试件进行观测,发现提高气熔比可明显改善切缝质量,切面条纹光滑区长度和条纹波长,切面粗糙度由6.969μm降低到2.482μm.同时对板厚分别为0.8,1.0,1.5,3.0的4组试件进行观测,随着板厚的增加,气熔比减小,切缝质量降低,切面粗糙度由5.946μm降低到2.287μm.板厚为0.8,1.0时,切面为较光滑的周期性条纹;板厚为1.5时,切面呈现两个区域,即光滑区和粗糙区;当板厚增加到3.0时,切面呈现三个区域,即光滑区,粗糙区和鳞状层叠区.综合研究气熔比和板厚可以加深对激光切割机理的认识,为提高氧化锆陶瓷板的激光切割质量提供理论与实验依据.
一种采用激光切割技术在Si3N4陶瓷表面预制微小切口,并结合SENB法测定陶瓷材料断裂韧性的新方法.利用连续激光束在陶瓷表面加工出切口,在三点弯曲实验前后分别运用激光共聚焦显微镜(LSCM)和扫描电镜(SEM)测量切口宽度和深度,而后计算陶瓷材料断裂韧性.在此基础析激光输出功率P,激光辐照光斑直径D和激光切割速率Vw与材料断裂韧性值的内在联系.结果表明:输出的激光能量密度达到陶瓷切割加工阈值后,光束在试件表面制得对应切口;切口深宽比为4.3~4.8时测得的Si3N4陶瓷断裂韧性值具有较高精度.
陶瓷材料的切割工艺是:切割陶瓷一般用瓷砖切割刀。氧化铝陶瓷是一种以氧化铝(Al2O3)为主体的陶瓷材料 氧化铝陶瓷的硬度非常大,经中科院上海硅酸盐研究所测定,其洛氏硬度为HRA80-90,硬度仅次于金刚石,远远超过耐磨钢和不锈钢的耐磨性能。,而自然界硬度的是金刚石,其硬度10 。
华诺激光隶属于北京华诺恒宇光能科技有限公司,是一家依托国际激光技术,致力于激光精密精细加工研发和代工的高科技企业。公司拥有超过1000平米的万级洁净实验室和生产车间,一支经验丰富的技术开发和管理团队,和超过30台包括紫外激光器,超快激光器,光纤激器,二氧化碳激光器等进口激光源,以及配套的加工平台,公司还拥有包括3D显微镜,激光干涉仪,红外热成像仪,二次元等检测和分析工具。 华诺激光专注于微米级的激光精密切割、钻孔、蚀刻、刻线、划片、材料去除、构造、雕刻和材料的打标,主要应用于LED芯片制造,触摸屏,LCD,消费类电子,半导体,MEMS,照明,等行业,以及科研、航天航空、军事等领域,涉及包括各种金属及合金、半导体、陶瓷、各种透明材质、薄膜和聚合物等各种材料,公司已经做过1000多个基于以上材料的各种激光微加工试验和方案。 华诺激光业务范畴包括前期的方案可行性研究和新制程开发服务、中期小规模试产和论证、后期的规模化量产业务等服务。