边缘计算
边缘计算则让自动驾驶汽车更快速地处理数据成为可能。这种技术使得联网设备能够处理在“边缘”形成的数据,这里的“边缘”是指位于设备内部或者与设备本身要近得多的地方。
据估计,到2020年,每人每天平均将产生1.5GB的数据量。随着越来越多的设备连接到互联网并生成数据,云计算可能无法完全处理这些数据——尤其是在某些需要非常快速地处理数据的使用场景当中。
边缘设备智能化的基本要求
将计算基础架构从数据中心扩展到边缘这一主张,得到了越来越广泛的共识。诸如联邦学习之类的概念,通过共享的预测模型进行协作学习这种方式,将标准集中式机器学习(ML)方法从数据中心转移到手机——在将数据存储到云的需求中,消解了对可实现ML能力的要求。5而各种深度神经网络(DNN),每天都在发展、以更好地赋能基于边缘的处理功能。成功地将智能带到边缘设备也带来了与传统的AI不同的商机——例如:个性化购物,基于AI的助手;或在制造设施中进行预测分析。边缘/雾计算的应用,比如:车辆的自动驾驶;需要复杂反馈机制的机器人技术的远程控制;甚至是使用ML、可更好地管理可再生能源的智能电网终端设备;以及在电网中对本地电能使用进行预测分析。对于此类应用,成功实施AI的主要决定因素包括:成本效益低功耗可重构性/灵活性尺寸
边缘计算的优点
说到边缘计算,我们不得不提到的就是云计算。云计算服务是一种集中式服务,所有数据都通过网络传输到云计算中心进行处理。资源的高度集中与整合使得云计算具有很高的通用性,然而,面对物联网设备和数据的爆发式增长,智能边缘计算报价,基于云计算模型的聚合性的服务逐渐显露出了其在实时性、网络制约、资源开销和隐私保护上的不足。
相比于云计算,边缘计算可以更好地支持移动计算与物联网应用,具有以下明显的优点:
1、极大缓解网络带宽与数据中心压力。
2、增强响应的实时性。万物互联场景下应用对于实时性的要求极高。传统云计算模型下,应用将数据传送到云计算中心,再请求数据处理结果,移动边缘计算报价,增大了系统延迟。以无人驾驶汽车应用为例,高速行驶的汽车需要毫秒级的反应时间,一旦由于网络问题而加大系统延迟,将会造成严重后果。而边缘计算在靠近数据生产者处做数据处理,不需要通过网络请求云计算中心的响应,边缘计算报价,大大减少了系统延迟,千兆无线技术的普及为网络传输速度提供了保证,这些都使边缘服务比云服务有更强的响应能力。
3、保护隐私数据,提升数据安全性。物联网应用中数据的安全性一直是关键问题,调查显示约有 78% 的用户担心他们的物联网数据在未授权的情况下被第三方使用。云计算模式下所有的数据与应用都在数据中心,用户很难对数据的访问与使用进行细粒度的控制。随着智能家居的普及,许多家庭在屋内安装网络摄像头,如果直接将视频数据上传至云数据中心,视频数据的传输不仅会占用带宽资源,还增加了泄露用户隐私数据的风险。
智能边缘计算报价-边缘计算报价-鲁科数据科技有限公司由北京鲁科数据科技有限公司提供。北京鲁科数据科技有限公司在仪器仪表这一领域倾注了诸多的热忱和热情,鲁科数据一直以客户为中心、为客户创造价值的理念、以品质、服务来赢得市场,衷心希望能与社会各界合作,共创成功,共创辉煌。相关业务欢迎垂询,联系人:白利。
速核电子,致力于智能采集终端产品的研发与销售,产品应用于高速数据采集、电力领域智能电子设备。此外,公司提供数据采集项目和产品的定制开发与服务。团队成员具备业内多年的产品开发经验,拥有成熟可靠的产品平台,有能力提供可靠的产品和服务。