金属构件在机械加工过程中会产生导致尺寸精度和稳定性降低的余应力,目前普遍采用热时效和传统振动时效(即亚共振时效)消除余应力。每吨工件热时效费用至少500元,消耗180千克标准煤,排放410千克二氧化碳和13千克二氧化硫。这样一个成本高、能耗大、污染严重的传统工艺竟然沿用至今。而传统振动时效噪音大、振型单一、效果欠佳、处理范围受限、操作繁琐、操作者需有丰富的工艺经验,特别对于高刚性、高固有频率的工件更是传统振动时效的禁区。
振动时效技术具有节能、节省费用、方便简单、省时省力、减少污染等突出优点,因此受到国内外的广泛重视。生产办公室也将该项技术的推广应用列入了“八五规划”,“九五规划”列为重点新技术推广项目,二000年国家经贸委列出二十五项重点推广的典型案例之一。振动时效是对机械制造业传统的自然时效和热时效方法的革命。
“振动时效技术”,国外称“Vibratory Stress Relidf Method”简称“VSR”)。它包括振动消除应力技术,振动焊接技术,振动铸造技术及用振动提高焊接构件及轴类构件疲劳寿命技术等项内容。在调整构件残余应力的技术领域中,振动时效技术完全可以代替原有的热时效工艺,因其应用面广,技术潜力大,而具有重大的经济和社会效益。
近二十年来,振动消除应力技术的研究和应用,在我国取得了飞速的发展。在此期间,经国内许多单位的共同努力,在振动时效机理、振动时效工艺技术和应用研究方面,取得了突破性的成果,制定了我国关于振动时效方面的国家行业标准“*共和国机械行业标准JB/T5926-2005”,了该项技术的应用和设备的生产,推动了该项技术的广泛应用,为我国经济建设做出了较大的贡献。
振动时效在西方发达国家,由于基础工业比较成熟,运用比较成熟。国内是近二十年由于电机技术和控制技术的发展,振动时效设备才能够满足机械构件消除应力要求,但由于振动时效涉及材料力学、振动学、金属物理学等多学科,相对而言工艺上比热时效复杂的多,而国内的参考书较少,应广大从事时效技术工作人员的要求,编者结合国内外焊接、铸造、锻造、机械加工领域里学者的核心理论,注重于通俗易懂,简单实用原则,编写了本书,该书适用于从事残余应力消除工作的工程技术人员,对振动时效技术的了解和运用。也可作为大专院校相关的师生的教学参考教材
一、 振动频率的确定
在共振状态下,可用小的振动能量,使工件产生的振幅,得到的动应力和动能量,从而使工件中的残余应力消除的更彻底,工件获得的尺寸稳定性效果更好。
振动时效中的共振状态,是在外部激振器激振力的持续作用下,零件处于“受迫振动”时的一个状态。它的条件是激振频率接近工件的固有频率,这时振动特性中的振幅—频率曲线出现一个峰值,振幅的陡然对振动时效产生附加动应力有利。
工件在振动时效时是一个振动体,它与其支撑用的弹性橡胶垫和激振器组成为一个振动系统,当该系统进行自由振动时,根据振动学原理,它的共振频率仅与系统本身的质量、刚度和阻尼有关。这个频率是由系统固有性质所决定的,称为固有频率。
振动时效中一个工件和它的支撑体组成振动学中一个质量和一个弹簧的振动系统,它的固有频率可用下列通式表示:
(4-1)
式中: -----固有频率(HZ);K---弹簧的刚度(Kg/cm);
m---振动体质量(Kg)。
图4-1示出了某均质等截面梁弯曲的频率及相应的振型。
由振动频率的方程解及上图可知,具有几个自由度的振动系统,有几个固有频率,按低至高
频顺序分别称为:固有频率(基本固有频率);第二个固有频率……。对于每一个固有频率都有一个确定的位移形态,称为振型,就是说,对应每一个固有频率都有对应的一个振型。
工件的固有频率可用振动时效设备本身来测定,以VSR系列振动时效设备为例,只要按一下控制器面板上的“启动”按钮,整套装置就会在其扫频范围内寻找出被时效工件的固有共振频率,并将固有频率值、固有频率下所对应的工件的振动加速度值及工件在固有频率周围的振动趋势图打印出来,使操作者一目了然。
图4-2
振动频率一般选择在共振峰前沿,即工件的亚共振区,一般确定在共振峰高度的 所对应的频率范围内,如图4-2所示,该工件的固有共振频率为4500r/min,共振时产生的振动加速度(峰值)为60.0m/s2,则对工件的振动时效频率就确定为工件的振动加速度值在20.0~40.0m/s2区域内所对应的频率。具体的确定方式有两种:
1.手动调节。首先将激振器频率调节到工件固有频率以下100r/min处,即4400r/min,观察控制器上加速度的值,然后再用手动慢慢升速,使加速度值升高在20~40m/s2范围内,具体掌握在多大的频率下,还要看工件的振动情况,若工件在共振状态时振动很激烈,则可选择在 范围内,若工件振动不是很激烈,则选择在 范围内。
2.自动调节。VSR系列全自动控制器会自动地控制整套设备对工件进行频率、振动情况的测定,并给出数据及曲线图,并根据系统自动地确定对工件的振动频率,这一切无需人工干预,而只需按一下自动按钮就可完成。
振动时效工艺
振动时效处理过程是将激振器刚性夹持在被处理工件的适当位置,首先根据零件大小,形状和加持情况来调节激振频率,使零件在其固有频率下进行共振,然后根据零件所需动应力或振幅的大小来调节激振力。零件的振动状态和动应力,可用测量振动和应力的仪表来检测。通常将感受元件(加速度计或速度计)接于被振物体上,振动时,感受元件把接收到得振动信号送往测试仪表,经放大电路将信号放大并指示出各种所需的参数值。振动状态的主要指示参数是振幅、频率和振型。振动状态和激振力的控制是通过控制激振器的控制装置来实现的。它能调节激振力、激振频率和振动时间。被处理零件在所需频率和振动强度下振动一段时间后,振动时效即告结束。
这个工艺过程一般为几分钟或几十分钟。
残余应力对构件变形的影响
残余应力是一个不稳定的应力状态。当构件受到外力作用时,作用应力与残余应力相互作用,使某些局部呈现塑性变形,截面内应力重新分析,当外力作用去除时整个构件将要发生变形。所以残余应力明显的影响着加工后的构件的精度。这也是机械和工程部门关心的问题之一。
实践已,具有表面拉伸残余应力的构件其尺寸稳定性远远不如具有表面压缩残余应力的构件尺寸稳定性好。
残余应力对构件变形的影响包括两个方面,一方面是构件抗静、动荷载的变形能力,另一方面是荷载卸除后变形的恢复能力。残余应力在这两个方面对构建的影响是很大的,因此人们一直在研究消除这些影响的有效方法。
§2.33残余应力对金属脆性破坏的影响
脆性破坏是构建在几乎不存在塑性变形情况下的突然开裂。它在温度突然下降或变形速度突然上升的情况下易发生。这是塑性变形处于压抑状态,如在突然受到较大的作用应力等原因,就易于发生存型断裂破坏。残余应力是作为初始应力存在于构件内,特别是拉伸残余应力与作用拉应力叠加而加速了脆性破坏。
有关文献中做了残余应力对脆性破坏的影响实验,吧76×91cm、厚2cm的软钢板对焊起来。在焊缝处沿结合方向的残余应力是接近焊接金属屈服极限的拉应力。
将焊好的试件的一部分作退货处理以消除焊接应力,再与未经退火处理的试件一起放在-13℃下冷却,发现经退火处理的时间未出现裂纹,而没退火的试件即使在无外力作用下也出现了脆性裂纹。分析其原因是在温度的快速下降时,材料塑性下降所引起的脆性破坏。
有关文献中也给出类似的实验,并得出结论:残余应力与开裂有直接关系,且产生的裂纹全都是存在于拉伸残余应力范围内。可见残余应力不仅直接影响到裂纹的扩展,而且降低了材料脆性破坏的作用应力的临界应力极限,加速了脆性破坏。
残余应力产生的脆性破坏在焊接件中是极易发生的。某重型汽车厂生产的车价由于焊接裂纹而大批报废。某造船厂铸造的十几吨重的大型链轮箱,因开箱温度过高而室温较低,壳体交角处从上至下出现断裂裂纹,裂纹速度发展很快。这些都说明在无外力作用下而产生的脆性破坏完全是由残余应力拉应力造成的结果。近些年来,国内外都在大量研究残余应力对裂纹的发生和扩展的影响。对标准试件施加定量的残余应力是比较困难的,因此该项研究受到较大的限制而进展不快。
主要技术参数
转数范围:2000 R/Min-8000 R/Min;
激振力调整范围:0-50KN;
电机额定功率:1200W;
适宜处理工件重量:≤10吨
稳速精度:±1R/Min;
加速度量程:0-50.0g;
电机额定电流:80A;
电机额定电压:2000V;
供电电源电压:交流220V±10%,50HZ±4%;
绝缘等级:E级;
工作条件:环境温度:-10℃—+40℃;相对湿度:不大于80%(25℃);
..陕西安烨顺电子科技有限公司专业从事机械设备、智能自动化设备、机械零部件、电子产品及配件和振动时效设备研发、生产、销售为一体的实业公司:服务于航空航天、船舶重工、**、机械加工、汽车制造、重型机械、科研院所、检测机构、高校、等领域。公司拥有经验丰富、技术精湛的*团队、业务娴熟的技术工程师和训练有素的销售人员,以客户需求为出发点,注重产品技术和质量,为客户提供较适合的产品技术方案以及较及时、周到的售前、售后服务。真诚欢迎您来电,将我司较好的服务带给各界人士..