掘进机配件厂在购买进口轴承时应该特别注意。国内目前的防锈技术还不是特别,对轴承体进行防锈处理时很容易留下厚厚的油迹,拿在手上粘粘稠稠,而国外原装进口的轴承上几乎看不到防锈油的痕迹,倒是特别细心的行家说进口轴承闻起来有一种味道,肯定是下了防锈油,只是看不到而已。
左手握住轴承体内套,右手拨动外套使其旋转,听其是否有杂响。由于大部分仿冒产品的生产条件落后,完全手工作坊式操作,在生产过程中难免会掺进沙子一类的杂质,藏在轴承体内,所以在旋转的时候会发出杂响。这是和严格执行生产标准、并且用机器操作的正厂之间的不同。
当指针由警告区接近危险区,而在采取改进润滑等措施后指针并未返回时,便可判明是轴承本身的问题,此时可趁尚未进入危险区时,将轴承报修。究竟距危险区多远开始报修,可由经验调整。利用这样的仪器,可以充分利用轴承工作潜力,及时将轴承报修,并可避免故障发生,是安全而经济的。
掘进机配件厂在轴承体上会印有字样、标号等。字体非常小,但是正厂出品大都使用钢印技术,而且在未经过热处理之前就进行压字,因此字体虽然小,但是凹得深,非常清晰。而仿冒产品的字体非但模糊,由于印字技术粗糙,字体浮于表面,有些甚至轻易地就可以用手抹去。
采煤机配件下放由运输队负责,并责成专人放置阻车器。装料前装料工应检查平板车各部件是否合格,不合格的车辆不得使用。装料时必须在平车前后各放一个阻车器,并掌握材料车的重心,严禁**宽**高。下放采煤机顺序为机身→左摇臂→右摇臂→左滚筒→右滚筒。
绞车司机开车前对所有绳头进行认真检查,绳头不符合规定要求的要及时反映,待处理完毕后方可开车。绞车司机在上班过程中严禁擅自离岗、脱岗。运料过程中要严格执行“一坡三挡”制度。同时作业地点矿车停车点下方必须放置两个阻车器,在有坡度变化的地段,阻车器由当班负责人安排专人放置,并有记录。信号工发现材料车掉道或材料偏移时,要及时发出停车信号,停车后进行处理问题,待问题处理完毕确认安全后,方可发出开车信号开车。运料过程中工作人员严禁扒车和乘坐矿车。卸料时,要轻拿轻放,必须**人员安全和设备完好。
采煤机配件装车后必须用导链或紧线机把设备牢固,并标明人员姓名、物料名称等做以记录。在运送材料过程中要严格执行“行车不行人,行人不行车”制度。绞车司机在开车前,首先检查绞车各部件是否齐全、牢固完好,地锚和压柱是否牢固,通讯信号是否灵敏可靠,严格执行“一停、二开、三倒车”的信号制度,确认无误后,再发出信号,听到信号并打回铃,再次听到信号后方准开车,绞车司机必须持证上岗,严禁**拉**挂。
不同工艺参数对铝合金激光深熔焊质量的影响
铝合金激光焊接技术是近十几年来发展起来的一项新技术。与传统焊接方法相比,激光焊具有热输入小,能量密度高,热影响区窄而熔深大,热变形小,接头性能好及易于控制等优点,因而逐渐得到广泛的应用。但由于铝合金具有较好的导热性能,对较高的激光束初始反射率及焊接过程中产生的等离子体对激光束的屏蔽作用,使得工件吸收光束能量困难,焊接过程不稳定,同时还易产生裂纹、气孔等缺陷。
目前对于铝合金激光焊接技术的研究依然是当前激光焊研究的热点,尤其是研究铝合金激光焊的熔化特性、气孔和裂纹的成因机理、焊接缺陷对力学性能的影响和激光焊接铝合金的等离子体现象等等。如何基于铝合金激光深熔焊的小孔诱导及行为机理,广泛应用于铝合金白车身的实际生产中,提升铝合金激光焊焊接质量是目前**主机厂的研究重点和难点。而在实车制造中,不同工艺参数对铝合金车门5系内板和6系铝合金加强板激光深熔焊焊接质量影响的研究尚未报道。
因此本文尝试通过以下方法来探索在不同焊接速度和功率条件下对激光焊外观质量和微观质量的影响规律。该研究主要通过两个路径:⑴利用样片实验研究不同参数对铝合金焊接质量的影响并获得优参数。⑵实车析优参数下铝合金激光焊焊接质量。
样片级别实验
实验材料为5182/1.5mm铝合金和S600/1.5mm铝合金,其化学成分分别如表1和表2所示,搭接形式:上层板S600/1.5mm+下层板5182/1.5mm,样片尺寸40mm×200mm,之后分别研究激光功率(表3)、焊接速度(表4)对该搭接形式的铝合金激光焊焊接质量的影响。
表1 5182铝合金成分(%)
pagenumber_ebook=24,pagenumber_book=31
表2 S600铝合金成分(%)
pagenumber_ebook=24,pagenumber_book=31
表3 激光焊功率影响的参数设置
pagenumber_ebook=24,pagenumber_book=31
表4 激光焊焊接速度影响的参数设置
pagenumber_ebook=24,pagenumber_book=31
图1所示是在功率为55%,焊接速度为60mm/s时的结果,其中图1(a)为焊缝的金相照片,图1(b)为激光焊接完成后背部的照片。从结果来看:在该焊接参数下,焊缝的熔深一条为0.37mm,一条为0.80mm,而公司要求的小熔深为0.45mm,则0.37mm这条焊缝不合格;两条焊缝的熔宽分别为1.71mm和1.40mm,均满足公司要求的小熔宽1.35mm,但1.40mm处于达标的边缘。并且从图1(b)可以看出,无背透现象。
pagenumber_ebook=24,pagenumber_book=31
图1 功率为55%时的激光焊结果
图2所示是在功率为60%,焊接速度为60mm/s时的结果,其中图2(a)为焊缝的金相照片,图2(b)为激光焊接完成后背部的照片。从结果来看:该焊接参数下,焊缝的熔深一条为0.49mm,一条为0.86mm,均满足公司要求的小熔深0.45mm;两条焊缝的熔宽分别为1.46mm和1.83mm,均满足公司要求的小熔宽1.35mm。并且从图2(b)可以看出,无背透现象。
pagenumber_ebook=25,pagenumber_book=32
图2 功率为60%时的激光焊结果
图3所示是在功率为65%,焊接速度为60mm/s时的结果,其中图3(a)为焊缝的金相照片,图3(b)为激光焊接完成后背部的照片。从结果来看:该焊接参数下,焊缝的熔深一条为0.53mm,一条为0.98mm,均满足公司要求的小熔深为0.45mm;两条焊缝的熔宽分别为1.46mm和1.89mm,均满足公司要求的小熔宽1.35mm。并且从图3(b)可以看出,出现背透现象。
pagenumber_ebook=25,pagenumber_book=32
图3 功率为65%时的激光焊结果
比较以上三种功率下的激光焊质量,熔深与熔宽随功率的变化曲线如图4所示,从结果看:⑴功率越大,熔深与熔宽越大,但功率从60%到65%时,熔深与熔宽的率小于5%。⑵随着功率的,有背透的风险,在功率为65%时,出现背透。因此样片测试结果显示功率选择在功率的60%时相对较优。
pagenumber_ebook=25,pagenumber_book=32
图4 焊接速度一定,熔深与熔宽随功率变化的曲线
图5所示是在功率为60%,焊接速度为70mm/s时焊缝的金相照片。从结果来看:该焊接参数下,焊缝熔深为0mm和0.27mm,均不能达到公司的要求,熔宽为0mm和1.35mm,其中一条无法满足公司的标准要求,另一条是刚刚达到公司的要求,因此在该参数下,无法满足公司的激光焊质量要求。
pagenumber_ebook=26,pagenumber_book=33
图5 焊接速度为70mm/s时的激光焊结果
图6所示是在功率为60%,焊接速度为50mm/s时的结果,其中图6(a)为焊缝的金相照片,图6(b)为激光焊接完成后背部的照片。从结果来看:该焊接参数下,焊缝的熔深一条为0.61mm,一条为1.01mm,均满足公司要求的小熔深0.45mm;两条焊缝的熔宽分别为1.60mm和1.80mm,均满足公司要求的小熔宽1.35mm。从图6(b)可以看出,该参数下出现明显的背透现象。
pagenumber_ebook=26,pagenumber_book=33
图6 焊接速度为50mm/s时的激光焊结果
比较以上三种焊接速度(图2、图5和图6)下的激光焊质量,熔深与熔宽随焊接速度的变化曲线如图7所示,从结果看:⑴焊接速度越小,熔深与熔宽越大,但从50mm/s时,出现明显的背透。⑵焊接速度越大,熔深与熔宽越小,但在70mm/s时出现未熔的现象。因此,样片测试结果显示速度选择在60mm/s时相对较优。
pagenumber_ebook=26,pagenumber_book=33
图7 激光功率一定时,熔深与熔宽随焊接速度变化的曲线
实车级别验证
采用样片级别得出的焊接参数,在激光功率为功率的60%,焊接速度为60mm/s的条件下进行焊接,焊接两台车,选取4条焊缝来研究,如图8中的RB1和 RB3。
pagenumber_ebook=27,pagenumber_book=34
图8 右后门激光焊焊缝分布
图9所示是2台车次每台车上4条焊缝的金相照片结果。从结果来看。
pagenumber_ebook=27,pagenumber_book=34
图9 不同车次上4条焊缝的金相照片
⑴所有焊缝的熔深与熔宽均满足公司的标准,样片级别实验获得的参数是有效的。
⑵分别对比VB1-2车和VB1-1车上RB1和RB3两条焊缝的金相可知。
1)同一车次,同一零件不同位置的匹配间隙是不均匀的,大的间隙在0.3mm左右。
2)间隙在小于0.3mm的情况下,可满足熔深与熔宽的要求。
3)同一车次,不同位置间隙对熔深与熔宽的影响。
①VB1-1:熔宽差异达0.3mm,熔深差异达0.5mm,熔深波动较大达19%。
②VB1-2:熔宽差异达0.6mm,熔深差异达0.03mm。
⑶分别对比RD1和RD2两条焊缝在不同车次VB1-1和VB1-2上的金相照片可知。
1)不同车次相同位置的零件匹配间隙差异较大,近0.3mm。
2)不同车次,相同位置的间隙对熔深和熔宽的影响。
①RD2:熔深差异在0.11mm,熔宽差异在0.02mm。
②RD4:熔深差异在0.27mm,熔宽差异在0.25mm,熔宽波动较大达12%。
结论
⑴样片级别实验结果表明焊接速度对激光焊质量的影响:焊接速度越小,熔深与熔宽越大,焊接速度在50mm/s时容易出现背透;焊接速度越大,熔深与熔宽越小,焊接速度在70mm/s时,容易出现未熔透,焊接速度在60mm/s时,熔深与熔宽相对较优。
⑵样片级别实验结果表明激光焊功率对激光焊质量的影响:焊接速度在60mm/s时,功率越大,熔深与熔宽越大,功率从60%Pmax增加到65%Pmax时,熔深熔宽增加率小于5%,且在65%Pmax时,出现背透。
⑶对比实车级别实验与样片级别实验,焊接速度在60mm/s,功率在60%Pmax时,实车焊接的熔深、熔宽和样片测出的熔深、熔宽均能满足公司的标准,且两板间隙控制在0.3mm的情况下,可满足公司熔深与熔宽的要求,但熔深与熔宽的波动相对较大。
皮带机的维护标准有哪些
皮带机本体及周围清洁、整齐,无积灰、无油垢、无矿物和杂物堆积。按时清扫及排污,各部防尘护罩及设施齐全有效。皮带机头尾罩子、漏斗等结构件严禁乱割、乱焊,并做好防腐。在巡检中详细检查托辊运转情况,做好记录,利用停机进行更换坏托辊。
润滑装置保持齐全完好,油质清洁,按润滑图表“五定”要求进行润滑。各部滚筒、增面轮、链轮、链条、配重架润滑充分,减速机油位保持在标尺中线,输出轴低速减速机至一轴轴承位置。皮带栏板、清扫器胶皮、挡尘帘及时更换,皮带栏板全部用楔铁固定,楔铁间距均等,约500mm。
皮带机应及时清理各部掉料,严禁发生掉料磨滚筒、增面轮及蹭皮带现象。及时调整皮带,杜绝皮带跑偏。皮带跑偏标准为距离两侧托辊或滚筒大于20mm。观察二层皮带有无下垂,防止压料及丢转。尾部丝杠调整,检修一周后紧固一次,以后每月紧固一次。
河南亚兴精锻股份有限公司创建于2003年,公司位于国家文化名城—郑州市文化路航天商务大厦,生产厂区位于黄河之滨、中原福地的平原新区,占地37.5亩,规划生产车间面积12000平方米。亚兴公司是研发制造、生产销售各种型号矿用刮板运输机配件及各行业所需的精锻件的主要骨干企业和供货商。公司建有现代化生产基地,拥有高、中级技术人员20多名和模具制造、锻造、机加工、热处理、装配等标准化生产单元;拥有**业中的电动螺旋2500吨、1600吨、1000吨压力机和1250kw、750kw、500kw中频感应透热炉三条生产线,台式电阻炉热处理生产线三条,加工中心、数控机床10余台及光电线切割机、数控锯床、钻床、拉床、预处理喷丸机、产品检测仪等设备,年生产能力**万吨。主营产品:各类刮板、E型螺栓、哑铃销、驱动链轮、横梁、齿轮、链条等几十种矿用机械配件、上百种型号,同时还生产加工综合机械锻造配件等。全部产品严格按照国家和行业标准研发设计、生产制造,并荣获郑州市“重质量守信用良好单位”称号等,2004年通过国家矿用产品安全标志检验证书,2009年通过了ISO9001:2000**质量体系认证,2011年国家工商总局颁发了“YX亚兴”注册商标认证。