• 池州煤机横梁

    池州煤机横梁

  • 2021-03-14 15:23 30
  • 产品价格:100.00
  • 发货地址:河南省焦作武陟县包装说明:不限
  • 产品数量:不限产品规格:不限
  • 信息编号:60108599公司编号:4230416
  • 班经理 经理
    15188359901 (联系我请说明是在阿德采购网看到的信息)
  • 进入店铺 在线咨询 QQ咨询
  • 信息举报
    产品描述
    简叙锻造模具设计及其发展(下)
    模架设计
    模架又称模座,夹持器。模架是用于定位和紧固模块并传递设备锻造力和锻件**出运动的主要部件,它承受锻造过程中的全部载荷。
    四种通用模锻设备(模锻锤、螺旋压力机、热模锻压力机和模锻液压机)中,除模锻锤没有模架外,其他三种模锻设备均有模架。模架型式很多,按模具定位方式分类有窝座式、十字键槽式等。
    在压力机上模锻,模块是经常更换的,而模架则长期使用,模架属于装备。一般模架使用年限应在20年以上。而且模架重量较重,制造复杂,价格高。一旦制成就难以改动。
    通用模架重量:MP型16MN热模锻压力机窝座式通用模架重量5~6t;25MN热模锻压力机模架重量6~8t;40MN热模锻压力机模架重量11~16t(其中十字键槽式模架重量约11t,而窝座式模架重量约16t);而125MN热模锻压力机模架重量50~65t。因此对模架设计、制造和使用必须足够重视。模架重量由设备封闭高度和模架结构确定。
    模架结构和制造精度直接影响模具结构和锻件精度,应引起高度重视。为了确保模架精度,应定期对模架进行检测和维护,并定期检修(一般应每年检测和维护)。
    模架种类及其用途
    模架按用途分类,有通用模架和模架,模架按模块定位方式分类,有十字键槽模架和窝座式模架。
    ⑴通用模架。通用模架系指各类锻件开式模锻和闭式模锻的模具均可在其上安装生产。一般有窝座式通用模架和十字键槽式通用模架。
    ⑵模架。一般用于大批量单品种生产,锻件精度高。常用的模架有:1)挤压成形模架;2)闭塞模锻模架(带活动模座,具有水平或垂直可分凹模结构);3)机械化模架(具有步进梁传送装置)。
    通用模架设计基本要求
    ⑴通用模架组。模架由上模座和下模座(又称模板或底板)、上垫板和下垫板、上模块和下模块、**出装置、导向装置及模具定位与紧固件组成。对于螺旋压力机,模架应拥有独立承击块,由于模块不设承击面,模块体积小,降低模具材料成本和制造成本。另外,还提高模具使用寿命。
    ⑵通用模架设计基本要求。
    1)模架结构力求具有较大通用性、性,以适应多品种生产。
    2)模架应具有足够的强度、刚度和韧性,防止模架变形和断裂。为此,模架内各种承受锻造负荷的零部件,包括上模座和下模座,均应采用合金钢制造并进行热处理。上模座和下模座以及垫板建议采用5CrNiMo模具钢。
    3)模架导向装置务必达到高精度,一般采用导柱导套装置,若是精密模锻,还需要匹配X导轨导向装置,其导向精度达到0.02~0.05mm。
    4)模架内设置的**出装置应**出顺畅有延时,有足够**出行程和**出力,并达到可靠、耐用,便于修理和更换。
    5)模架应确保模块定位准确,紧固可靠,又操作(含调整和装卸)方便。
    6)模架上应设有起重孔或起重棒。
    窝座式通用模架
    ⑴特征。
    图7是热模锻压力机窝座式通用模架,在上模座和下模座内具有安装模具的窝座,模块紧靠模架窝座内的三个相互垂直的平面定位,采用斜面压板紧固。若是摩擦或电动螺旋压力机模架,还应在模架上设计独立承击块,这样模具就不需要设计承击面,不仅模块体积小,而且提高模具使用寿命。
    ⑵优点。
    1)模块定位准确,紧固牢靠。窝座式模架是压力机使用广泛的典型结构。
    2)适用于锻件批量大、精度高的生产场合。
    3)模架制造精度高。模架上模座和下模座三个相互垂直的模具定位基准平面的尺寸制造公差为为±0.02mm,形位公差为0.02~0.05mm。若模具对应的三个相互垂直的定位基准平面尺寸制造公差也达到±0.02mm,形位公差为0.02~0.05mm,则模具安装后即可开始生产,模具做到安装免调整,提高劳动生产率。
    4)模架导向精度高。模架一般采用“导柱导套”导向装置,若是精密模锻,则还需要增加X导轨导向机构,较大提高导向精度。
    ⑶缺点。
    需要有较强模具制造能力和较高制模精度。通用性和互换性没有十字键式通用模架好。
    十字键式通用模架
    图8是热模锻压力机十字键式通用模架,模具十字键定位,用T字形螺栓和L形压板紧固。
    ⑴特征。
    pagenumber_ebook=40,pagenumber_book=56
    图7 热模锻压力机导柱导套窝座式通用模架
    pagenumber_ebook=41,pagenumber_book=57
    图8 十字键槽式通用模架
    上模座和下模座均为平面,模座上放置垫板,垫板上放置模具。在模具、垫板、模座之间原先均采用互成直角、呈十字的键进行前后、左右定位和调整(图8)。即模块用十字键定位,T字形螺栓和L形压板紧固。垫板上面和下面均加工有互成直角、呈十字的键槽,并采用键定位,这样就削弱了垫板强度。为了提高垫板强度宜采用将垫板放置在上模座和下模座窝座内,并采用螺栓紧固。
    ⑵优点。
    1)通用性和性较好,适应多品种、不同尺寸锻件,故适合中、小批量以及需要经常进行反复生产场合。
    2)模架制造比较简单,不需要大型龙门铣床。
    3)模架重量较轻,因为上、下模座均为平面,没有框,故比窝座式模架重量约轻20%~25%。
    (3)缺点。
    1)模具十字键定位,刚性差,键槽磨损较快,影响锻件精度,增加生产过程模具调整工作量(调整锻件错差)。
    2)垫板强度弱,因为垫板上面加工有十字键槽,削弱了垫板强度,易发生开裂。模具也易开裂。
    锻件发展方向是锻件精度不断提高,不仅锻件公差不断减小,而且加工余量也不断减小,锻件属精化毛坯(省略粗加工)。为了提高锻件精度和缩短换模时间,提高模锻设备生产能力,提高生产率。宜采用窝座式通用模架,并开始采用自动液压锁紧窝座式通用模架,故十字键式通用模架正在逐步淘汰。
    自动液压锁紧窝座式通用模架
    为了快速定位和紧固模具,并达到免调整安装模具,近年来产生自动液压锁紧窝座式通用模架,模块靠窝座内三个相互垂直的平面定位,采用自动液压斜面压板紧固模具,可以快速换模,一般仅需要20~30分钟。
    这种模架由机构将模块推入模架窝座内,并紧靠模架窝座内三个相互垂直的定位平面,然后采用自动液压锁紧的斜楔块将模块压紧。做到模块快速安装,并免调整安装模具。但是模具模膛和定位面制造精度要求高,模架窝座定位平面尺寸公差为±0.02mm,垂直度、平行度和平面度等形位公差为0.02~0.05mm。这种自动液压锁紧窝座式通用模架将是模锻企业今后发展方向。
    伴随着加工设备的快速发展,模具及模架制造精度的提高,锻造模具已经向着安装免调整方向发展,实现减少更换模具的调整时间,从而提高生产率。另外,由于模架和模具导向精度高,取消模具导向锁扣,减少模块体积和模具材料成本,并应避免安装繁琐,调整困难。
    模架设计应做到导向精度高、**出装置动作顺畅有延时,具有足够的**出行程和**出力,还要做到模具定位、紧固牢靠,并能快速装卸模具等。据调研,已经有锻造企业开始采用自动锁紧窝座式通用模架,做到模具安装免调整。
    池州煤机横梁
    一种大负角敞口零件成形工艺的研究
    本文对一种大负角敞口零件成形工艺进行研究,讨论了拉深成形、管式内高压成形和弯曲胀形三种工艺方法在典型零件上的应用。通过讨论终采用弯曲胀形工艺方法对此典型零件进行CAE分析和零件试制,试制结果满足预定要求。弯曲胀形工艺可作为该典型零件和其他类似零件的成形工艺。
    随着板材成形技术的发展,许多特种成形方式已经实现产业化。充液成形就是其中的一个代表工艺。充液成形按照成形方式可分为主动式充液成形(充液胀形)和被动式充液成形(充液拉深)。本文所介绍的零件采用的是弯曲胀形工艺,弯曲胀形工艺是主动式充液成形的一种,对成形深度大、带负角的敞口零件具有*特的优势。下面就分别从零件和材料简介、工艺方法研究、零件试制等方面进行介绍。
    零件和材料简介
    零件外形如图1所示,零件壁厚1.2mm,外形尺寸约为217mm×208mm×185mm。零件近似为两端没有底的3/5圆筒件,负角约15°。该零件材料为6A02铝合金,6A02是铝镁硅系可热处理强化的铝合金,耐腐蚀性较好,易于点焊及氢原子焊。材料在退火状态下拥有较高的塑性,淬火后拥有中等强度和塑性,但淬火后胀形易产生橘皮。该材料退火状态下力学性能参数详见表1。
    工艺方法研究
    仔细分析零件的形状特点,根据形状特点来研究采用何种成形工艺。该零件从轴向投影上看存在较大负角,如图2所示,红圈圈出部分即为负角部分,这部分是无法通过拉深成形出来的,且拉深深度很大,零件冲压方向的高度约185mm,再加上补充高度,拉深高度将达到220mm,近似拉深比约为3,拉深时零件会产生破裂。
    该零件从周向投影看也存在负角,如图3所示,红圈圈出部分即为负角部分,负角较小,可以采用充液拉深成形出来,但是拉深深度是图2所示冲压方向拉深深度的1.5倍,拉深比达到了4,拉深不到一半就会破裂。
    pagenumber_ebook=37,pagenumber_book=44
    图1 零件外形
    pagenumber_ebook=37,pagenumber_book=44
    图2 零件轴向投影视图
    通过对图2和图3的分析,可以得出该零件无法通过拉深这种工艺方法成形。
    pagenumber_ebook=37,pagenumber_book=44
    图3 零件周向投影视图
    然后考虑一下管式内高压胀形,相对对拉深成形的判断,此零件能否采用内高压胀形的判断相对困难些。需要将零件补成封闭的管形零件,如图4所示,测量一下零件沿轴向的截面周长,约为687.4mm,小约为552.6mm,膨胀率达到了24.4%,且图4红圈处为局部凸起的小特征,后才能胀形到位,无法从其他地方补料,导致此处因减薄过大而产生橘皮或破裂,所以采用管式内高压胀形也是不可行的。
    表1 6A02-退火态材料力学性能
    pagenumber_ebook=37,pagenumber_book=44
    pagenumber_ebook=38,pagenumber_book=45
    图4 补充后的管形零件
    后考虑采用弯曲胀形工艺。弯曲胀形工艺是主动式充液成形的一种,由弯曲和胀形两个工步组成,两个工步在一套模具中实现。首先对板料进行弯曲,弯曲胀形中的弯曲与传统弯曲工艺有一定的不同,由于胀形工艺的存在,弯曲后的零件产生的轻微褶皱均可以在胀形工步中展开,零件弯曲后的形状较传统弯曲工艺可以较加复杂。弯曲工步完成后,对弯曲后的零件进行充液胀形。由于高压液体充当胀形凸模,充液胀形较传统胀形拥有很多优势,其中的优势就是充液胀形可以胀形出带大负角且拥有较多复杂特征的零件,本文所研究的零件即属于这一类零件,这样的零件采用充液胀形工艺为合适。
    图5所示为零件弯曲胀形工艺分析模型。模型由凸模、板料、凹模组成。
    工艺动作顺序为:首先凸模下行,将板料弯曲,直至与凹模合死;然后高压液体从凸模打入到零件上表面,在高压液体的作用下零件胀形直至完全与凹模相贴合。
    凸模的主要作用是对板料进行弯曲,凸模型面的形状决定了零件压弯后的形状。为了避免压弯后的零件产生破裂和严重的褶皱,要求凸模型面要有较大曲率且曲率变化不要过大。零件的凸模模型如图6所示。
    pagenumber_ebook=38,pagenumber_book=45
    图5 弯曲胀形工艺分析模型
    pagenumber_ebook=38,pagenumber_book=45
    图6 弯曲胀形凸模模型
    凹模的主要作用是使零件胀形后贴在凹模型面上,从而成形出零件终形状。凹模型面的形状是根据零件终形状进行回弹补偿后的形状。此零件的凹模模型如图7所示。
    工艺参数设置为:凸凹模摩擦系数0.125,板料网格1.2mm,凸模压力300t,液室压力10MPa,零件坯料尺寸800mm×500mm×1.2mm,弯曲高度228mm。采用CAE软件DYNAFORM对工艺进行分析,分析结果如图8所示。
    从分析结果可以看出零件的减薄为11.2 %。零件材料为6A02-O,根据以往经验材料减薄不**过13%就不会产生橘皮或破裂。零件增厚为4.4%,不会产生褶皱。综上可以得出弯曲胀形工艺可行。
    pagenumber_ebook=39,pagenumber_book=46
    图7 弯曲胀形凹模模型
    pagenumber_ebook=39,pagenumber_book=46
    图8 零件减薄云图
    零件试制
    根据工艺分析结果对零件进行试制。制件过程如下:首先利用剪板机进行下料;打磨料边缘的毛刺;将料与凹模相贴的地方贴上塑料膜,防止零件表面划伤。然后将料对中放在凹模上;凸模下行合模到底后加压至300t;加液压到设定压力10MPa;后卸掉液室压力,卸掉设备合模压力,开模取件,完成制件。
    pagenumber_ebook=39,pagenumber_book=46
    图9 零件实物
    终制造出的零件如图9所示。零件无起皱和破裂,轮廓度0.1mm,减薄约12%,与CAE软件分析结果相近且达到图纸要求。
    结论
    本文对一种大负角敞口零件的成形工艺进行了研究,讨论了拉深成形、管式内高压成形和弯曲胀形三种工艺方法在此典型零件上的应用。通过讨论终采用弯曲胀形工艺方法对此典型零件进行CAE分析和零件试制,终制造出的零件与CAE软件分析结果相近且达到图纸要求,了弯曲胀形工艺的可行性。而对于和本文所述零件相类似,拥有较大负角、零件轴向两端敞口且采用内高压成形胀形量很大的零件,可以采用本文所述弯曲胀形工艺作为零件成形工艺。
    池州煤机横梁
    发动机活塞演变过程及锻钢活塞研究
    活塞是汽车发动机的“心脏”,承受交变的机械负荷和热负荷,是发动机中工作条件恶劣的关键零部件之一。随着国五及国六排放标准实施,常规的铝合金和铸铁活塞已远远不能适应高性能发动机的高增压、低油耗、低排放等新技术要求。
    锻钢结构活塞因的抗高温性能,可承受住重型商用车发动机的高爆发压力,成为了解决方案。爆发压力是发动机气缸里压力,它决定了发动机对外输出的功率及排放,发动机爆发压力在1961年只有110Bar,2000年上升到180Bar,随后几年加速上升至240Bar,预计2020年可达到270Bar。
    随着越来越严苛的排放标准实施,中国汽车发动机行业将发生较大变化,尤其是重型柴油机对钢活塞的需求将会日益上升,锻钢活塞的需求量将会逐年攀升,市场前景会较加宽广。
    发动机活塞产品介绍
    活塞在高温、高压、高负荷条件下工作,对材料、机械性能要求相对比较高,要有足够的强度、刚度,重量要轻,以保证小的惯性,导热性还要好,还需耐高温、高压、腐蚀,保证充足的散热能力,且受热面积要小。按制造活塞的材料及演变过程可分为铝合金活塞、铸铁活塞、钢活塞类。
    铝合金活塞
    铝合金活塞材质轻,能有效降低总成重量,密度小,大大减小了活塞的质量及往复运动的惯性力。铝合金活塞常常应用于中小缸径的中高速内燃机上,工作过程中产生的惯性小,对高速内燃机的减振和降低发动机的质量有重要意义,典型铝合金活塞如图1所示。
    pagenumber_ebook=27,pagenumber_book=43
    图1 铝合金活塞
    铸铁活塞
    现代发动机尤其是柴油机为了大幅度地提高热效率,增压程度不断提高,这使得气缸内部的热负荷明显。铝合金活塞本身固有的热强度不高、线膨胀系数较大的缺点越来越严重,使其在柴油机上的使用范围受到明显的限制。为此,在一些大负荷的柴油机上,开始采用热强度和耐磨性较高而线膨胀系数较低的铸铁活塞,铸铁的密度约为铝合金的3倍,中、小型卡车典型的铸铁活塞如图2所示。
    pagenumber_ebook=28,pagenumber_book=44
    图2 铸铁活塞
    锻造钢活塞
    以上活塞都是采用铸造工艺进行生产,随着大马力汽车发动机快速发展,尤其是重型柴油发动机涡轮增压,低排放等要求的不断提高,传统铝合金及铸钢活塞材料已无法满足使用要求。目前国外很多公司已将钢活塞应用于高性能中重型柴油机上,如曼、卡特彼勒、**、戴姆勒、沃尔沃、奔驰等公司。
    钢的机械强度高,耐热性、耐蚀性以及耐磨性均**铝合金和铸铁,具有高弹性模量,优良而稳定的高温性能和比较低的线膨胀系数等优点,但缺点是密度大、加工麻烦、成本高,对缸套的磨损严重,为使活塞质量较轻,通常将钢制活塞的结构设计得十分复杂,活塞裙部断面很薄,锻造工艺难度较大,复杂系数达到S4级别,钢活塞产品如图3所示。
    pagenumber_ebook=28,pagenumber_book=44
    图3 商用车钢活塞
    锻造钢活塞生产研究
    锻造钢活塞在近几年发展比较迅速,是活塞产品的主流生产工艺,随着国家对环保力度的加强,发动机排放标准日趋严格,钢活塞产品的发展空间将会较大。锻造活塞对产品结构、形状要求严格,生产成本高,后续机加工难度比较大,在生产过程中容易产生模具寿命低、裙部充不满、裙部变形、淬火裂纹、表面质量不满足要求等问题。
    活塞锻件结构分析
    ⑴活塞进、出油孔。
    传统的钢活塞内腔进、出油孔都是通过机加工实现的,这样活塞产品内腔结构比较简单,模具内芯经过氮化处理后抗磨损性能加强,模具寿命较高。随着客户对产品要求的不断提高,原来经过机加工方式获得的进、出油孔结构需要采用锻造方式实现,这就给锻造工艺带来很大的难度,常见的活塞进、出油孔结构如图4所示。
    pagenumber_ebook=28,pagenumber_book=44
    图4 常见活塞进、出油孔形状
    目前高压缩比活塞产品进、出油孔结构比较复杂,个别出油孔直径只有φ8mm左右,拔模角在5°~10°,这样给模具制造带来很大难度,进、出油孔直径比较小,在模具上呈现凸起结构,耐磨性差,导致模具寿命偏低。同时客户对锻件进、出油孔尺寸精度要求非常高,有轮廓度、公差的要求,轮廓度要求±0.5mm,生产过程中模具稍有磨损就可能导致轮廓度**差,产生批量废品,油孔形状如图5所示。
    pagenumber_ebook=29,pagenumber_book=45
    图5 高压缩比活塞进、出油孔形状
    ⑵锻钢活塞结构。
    1)整体结构:发动机在国四排放标准之前,国内主流锻造活塞为整体结构,将活塞头与活塞裙集成为一体,锻件毛坯重量约为成品重量的2~2.5倍,经过机加工后成品重量比较轻,同时强度及性能都可以满足工况要求,活塞整体高度降低,减小了发动机高度,节约了装配空间,同时对减轻整车的重量有着积极的作用,但是这种结构的活塞加工成本较高,活塞油道环状凹槽加工难度大,对机加工设备、工艺、加工的寿命具有很大的挑战性,典型的整体锻造钢活塞产品如图6所示。
    pagenumber_ebook=29,pagenumber_book=45
    图6 整体钢结构活塞
    2)铰接结构(钢活塞**部+铝合金裙部):大马力发动机的活塞负载很大,所以要用钢材料,而活塞是往返运动件,消耗的能量很多,这就要求重量应尽量轻一些,所以底部还是要用轻材料铝合金,这样就诞生了铰接结构活塞,如图7所示。
    pagenumber_ebook=29,pagenumber_book=45
    图7 铰接结构(锻钢+铝合金)
    3)分体结构(钢活塞头+钢活塞裙):活塞头和活塞裙通过激光焊接组成的活塞可以满足发动机排放标准要求,同时此种活塞以高压缩比,燃烧较充分等优点将逐渐替代整体钢活塞,锻造钢活塞头及活塞裙产品如图8所示。
    pagenumber_ebook=29,pagenumber_book=45
    图8 分体结构(活塞头+活塞裙)
    锻造过程模拟分析
    活塞产品设计过程中采用Forge软件进行工艺模拟,通过对镦粗、预锻、终锻各工位数值模拟,在项目开发过程中将工艺、设计等问题的风险降到,经过几轮的工艺模拟论证,终确定数模用于模具加工制造。
    ⑴镦粗模拟结果分析。
    镦粗工位主要控制坯料镦粗高度及去除氧化皮,镦粗高度对预锻件充满程度有很大影响,此活塞产品坯料高度由135mm镦粗至90mm。
    ⑵预锻模拟结果分析。
    预锻是活塞产品工艺设计成败的关键,保证预锻充满良好的同时锻打力还不能**出锻造设备的额定吨位。图9所示状态均为设计厚度(N+1)mm时的模拟情况,预锻充满良好,预锻工位的锻打力在额定的设备吨位以内。
    pagenumber_ebook=29,pagenumber_book=45
    图9 预锻充满情况
    ⑶终锻模拟结果分析。
    终锻工序是保证客户终产品的工位,此工位的模拟结果直接影响现场实际生产时终锻件的质量,模拟参数的设置很关键,模拟步骤设置的越细结果越接近实际生产情况。
    终锻件充满情况如图10所示,由模拟结果可以看出,在厚度尺寸+1mm情况下,终锻件充满良好,这样设置模拟的目的是保证实际生产过程中锻件充满,为充满预留一定的保险系数,同时也为实际生产原材料下料提供数据参考。
    pagenumber_ebook=29,pagenumber_book=45
    图10 终锻充满情况
    总结
    锻造钢活塞是发动机活塞将来发展的趋势,也是主流生产工艺,一汽锻造公司没有该类产品的开发经验,在公司的大力支持下,项目团队临危受命,经过两年多的技术攻关实现活塞产品大批量生产,产品质量获得客户的充分认可。开发过程中获得**一项,技术创新二十余项,后续针对未关闭的项目加大研发力度,突破锻钢活塞技术、工艺难题,为公司提质、降本、增效提供强有力的支持。
    池州煤机横梁
    基于数值模拟的多楔带轮成形工艺研究
    带轮作为一种重要的传动零件, 广泛应用于汽车、农机、水泵以及机床等机械设备传动中。带轮传统加工方法是采用铸、锻毛坯经切削加工而成,特点是浪费材料、生产效率低,产品具有精度低、笨重、转动惯量大等缺点。随着科学技术的发展进步,锻压及旋压技术以其节能节材、生产效率高、产品性能好、合格率高等优点,逐步推广应用到带轮的实际生产中。
    带有凸台的多楔带轮的成形采取锻压与旋压相结合的成形工艺,而关于影响复杂结构多楔带轮成形质量的工艺参数,并没有明确的研究结果可以参考,故零件生产多结合有限元模拟和试验分析得到较为合适的参数,并在此基础上进行下一步的优化。根据材料的拉伸系数计算拉伸道次,结合冲压与锻造技术并采用有限元模拟软件DEFORM-3D进行数值模拟,分析成形过程中的应力、应变分布,为锻压成形多楔带轮的实际生产提供参考。
    零件结构分析
    带有凸台的多楔带轮结构如图1、图2所示,在旋压成形多楔齿之前需经过锻压成形内筒及凸台,其中凸台的成形难度较大。多楔带轮材料为DD13钢,基本力学性能如下:屈服强度为325MPa,密度为7.851g/cm3,弹性模量为205GPa,泊松比为0.29。
    pagenumber_ebook=32,pagenumber_book=39
    图1 多楔带轮结构图
    pagenumber_ebook=32,pagenumber_book=39
    图2 多楔带轮三维示意图
    锻压成形工艺分析
    根据体积不变原理,利用Pro/Engineer对多楔带轮体积进行计算,同时考虑预留加工余量,确定选用厚度为3mm,直径为206mm的板坯进行制坯。根据零件结构特点制定其锻压成形工艺路线:多道次拉深成形内筒→冷锻内筒→成形凸台→成形外圆弧。
    内筒的多道次拉深成形工艺参数可查询冲压手册,为尽可能降低板坯减薄程度,设计三道次拉深成形内筒。通过查阅带凸缘拉深系数表并且结合生产实际,设计次拉深系数m1=0.52。由拉深系数计算公式:
    pagenumber_ebook=33,pagenumber_book=40
    其中,m为拉深系数,d为筒壁直径(mm),D为毛坯直径(mm)。计算得拉深直径为d1=107mm。后两道次拉深系数通过查询冲压手册并结合实际取m2=0.75,m3=0.77。故拉深直径分别为d2=80mm,d3=61.3mm。凹模圆角半径的计算公式如公式2所示:
    pagenumber_ebook=33,pagenumber_book=40
    其中,t 为坯料厚度(mm),D 为毛坯直径(mm),d为次拉深后筒壁直径(mm)。计算出*1次拉深中凹模圆角半径r1为14mm。由此可确定出后续拉深的凹模圆角半径为:r2=10mm,r3=7mm。由于内筒的成形属于变薄拉深,在经过三道次的拉深成形之后需经过冷镦工步对内筒筒壁增厚,故**道次的拉深高度需大于零件内筒的图纸尺寸,结合实际生产经验**道次拉深高度为h=24mm。
    有限元模型建立
    利用Pro/Engineer建立工件和各道次模具的三维模型,基于Deform-3D软件对多道次成形过程进行模拟分析,模拟采用“SI”公制单位,实际生产中材料为DD13,模拟选择材料库中与之相近的AISI-1008,坯料设置为塑性体,模具为刚性体,网格数量划分为150000个,并运用局部网格细化技术对坯料中间部分进行网格细化分。根据生产实际将摩擦因数设置为0.12,冲压速度为10mm/s,温度为20℃。图3所示为道次模具结构。
    模拟结果分析
    pagenumber_ebook=33,pagenumber_book=40
    图3 *1道次拉深成形模具图
    pagenumber_ebook=33,pagenumber_book=40
    图4 至*三道次等效应变分布图
    道次至*三道次有限元模拟的等效应变分布如图4所示。由图4(a)可见应变值较大处出现在内筒上下圆角处,即内筒上下圆角处变形程度较大。由于*二道次和*三道次的拉深高度不再变化,只在筒径上发生变化,故内筒的上侧圆角处应力较为集中,如图4(b)和图4(c)所示。*三道次筒径缩小到61.3mm,已近似于零件内筒直径61mm,此时内筒圆角及筒壁处壁厚发生了减薄。有限元模拟过程中未出现刮料、折叠缺陷,成形质量较好。
    *四道次冷镦成形内筒。由于**道次的拉深使内筒筒壁及圆角处有所减薄,所以冷镦内筒的目的是增厚内筒筒壁及内筒上侧圆角以保证后续零件的成形质量。冷镦工艺是一种精密塑性成形技术,具有制品的机械性能好、生产率高和材料利用率高,特别适合于大批量生产等优点。由图5等效应变分布图可知,坯料内筒上圆角处应变值较大,因上圆角处圆角半径较大,在上模下压时坯料上圆角处与下模发生刮蹭,故出现应力集中的现象。从成形结果上看内筒筒壁及上侧圆角处金属充填饱满,满足后续加工要求。锻压成形过程中载荷出现在该道次,*四道次载荷图如图6所示,载荷为184吨。
    pagenumber_ebook=34,pagenumber_book=41
    图5 *四道次等效应变分布图
    pagenumber_ebook=34,pagenumber_book=41
    图6 *四道次载荷图
    *五道次冲压预成形凸台以及轮辐与内筒相接的圆角,*六道次通过局部加载凸台处的上模具将凸台锻造至零件要求壁厚。通过锻造工艺使凸台处近净成形,减少机加工量;同时使金属材料向四周圆角处流动充填,提高产品表面光洁度和产品精度;并且可以改变金属组织,提高金属性能。*五道次至*六道次等效应变分布图如图7所示。成形过程中没有出现刮料、折叠等缺陷,但是从图7(b)可见凸台圆角处未充填饱满,这是由于凸台高度较高,冲压过程中减薄较严重引起的。
    pagenumber_ebook=34,pagenumber_book=41
    图7 *五道次至*六道次等效应变分布图
    工艺优化
    为解决成形方案中凸台圆角处充填不饱满的问题,考虑在成形凸台之前增加一道次,在内筒与轮辐之间作圆弧过渡,使坯料在凸台处聚料,后两道次按照成形方案的模具进行模拟。增加在凸台处聚料的道次及成形凸台后一道次的应变分布图如图8、图9所示。从成形结果看,凸台圆角处充填饱满,并且没有缺陷产生,成形效果较好,故该成形方案可以有效地解决凸台处减薄严重的问题。对比各道次等效应变值可以发现,随着道次的增加,材料内累积的应变值越来越大。
    pagenumber_ebook=35,pagenumber_book=42
    图8 增加道次的等效应变图
    pagenumber_ebook=35,pagenumber_book=42
    图9 凸台成形等效应变图
    后一道次冲压成形外圆弧,该道次是为后续旋压成形轮缘及多楔齿做准备,等效应变图如图10所示。可见内筒上圆角和凸台处的应变值较大。终成形结果图如图11所示,成形效果良好。经过测量各处壁厚均达到后续加工要求。
    试验验证
    根据模拟分析结果,利用YQK-200型液压机进行试验,得到了合格的样件,多楔带轮锻压试件如图12所示。可以看出凸台部分成形质量较好,试件表面光洁度较高,未出现刮料、叠料等现象,经测量试件各关键部位处壁厚均达到后续加工要求。通过试验验证了该锻压工艺的正确性,可为实际生产提供。
    结论
    pagenumber_ebook=35,pagenumber_book=42
    图10 终成形等效应变分布图
    pagenumber_ebook=35,pagenumber_book=42
    图11 终模拟结果图
    pagenumber_ebook=35,pagenumber_book=42
    图12 多楔带轮锻压试件
    通过对双凸台多楔带轮锻压工艺方案进行深入分析,将冲压工艺和锻造工艺相结合,采用有限元软件Deform-3D对其成形工艺进行了数值模拟,分析了其成形过程中的应力应变分布,并进行了工艺试验验证,结论如下。
    ⑴双凸台多楔带轮结构较复杂,为控制内筒的减薄程度,内筒需采用多道次拉深成形,结合材料的拉深系数计算拉深道次,并计算各道次拉深的工艺参数。成形过程中应变主要集中在内筒上下圆角处,有轻微的减薄,后续通过冷镦工艺对筒壁及圆角处进行了有效增厚。
    ⑵凸台的成形需结合冲压技术和锻造技术,控制金属流动方向和速度,保证其成形质量。并通过工艺优化解决了凸台处壁厚减薄严重的问题。
    ⑶结合有限元模拟结果,通过试验验证了工艺的可行性,得到了符合要求的锻压件。
    河南亚兴精锻股份有限公司创建于2003年,公司位于国家文化名城—郑州市文化路航天商务大厦,生产厂区位于黄河之滨、中原福地的平原新区,占地37.5亩,规划生产车间面积12000平方米。亚兴公司是研发制造、生产销售各种型号矿用刮板运输机配件及各行业所需的精锻件的主要骨干企业和供货商。公司建有现代化生产基地,拥有高、中级技术人员20多名和模具制造、锻造、机加工、热处理、装配等标准化生产单元;拥有**业中的电动螺旋2500吨、1600吨、1000吨压力机和1250kw、750kw、500kw中频感应透热炉三条生产线,台式电阻炉热处理生产线三条,加工中心、数控机床10余台及光电线切割机、数控锯床、钻床、拉床、预处理喷丸机、产品检测仪等设备,年生产能力**万吨。主营产品:各类刮板、E型螺栓、哑铃销、驱动链轮、横梁、齿轮、链条等几十种矿用机械配件、上百种型号,同时还生产加工综合机械锻造配件等。全部产品严格按照国家和行业标准研发设计、生产制造,并荣获郑州市“重质量守信用良好单位”称号等,2004年通过国家矿用产品安全标志检验证书,2009年通过了ISO9001:2000**质量体系认证,2011年国家工商总局颁发了“YX亚兴”注册商标认证。

    欢迎来到河南亚兴精锻股份有限公司网站,我公司位于华夏民族早期活动的中心区域之一、中国太极拳发源地—焦作市。 具体地址是河南焦作武陟县公司街道地址,负责人是班经理。
    主要经营刮板。
    本公司供应能源 煤矿设备 特殊/专业煤矿设备 ,我们有大型的仓库和场地,我们还有专业的技术人员,我们公司保证供应给你质量最优的产品!

    本页链接:http://www.cg160.cn/vgy-60108599.html
    以上信息由企业自行发布,该企业负责信息内容的完整性、真实性、准确性和合法性。阿德采购网对此不承担任何责任。 马上查看收录情况: 百度 360搜索 搜狗
河南亚兴精锻股份有限公司创建于2003年,公司位于国家文化名城—郑州市文化路航天商务大厦,生产厂区位于黄河之滨、中原福地的平原新区,占地37.5亩,规划生产车间面积12000平方米。亚兴公司是研发制造、生产销售各种型号矿用刮板运输机配件及各行业所需的精锻件的主要骨干企业和供货商。公司建有现代化生产基地,拥有高、..
相关分类
附近产地