发动机活塞演变过程及锻钢活塞研究
活塞是汽车发动机的“心脏”,承受交变的机械负荷和热负荷,是发动机中工作条件恶劣的关键零部件之一。随着国五及国六排放标准实施,常规的铝合金和铸铁活塞已远远不能适应高性能发动机的高增压、低油耗、低排放等新技术要求。
锻钢结构活塞因的抗高温性能,可承受住重型商用车发动机的高爆发压力,成为了解决方案。爆发压力是发动机气缸里压力,它决定了发动机对外输出的功率及排放,发动机爆发压力在1961年只有110Bar,2000年上升到180Bar,随后几年加速上升至240Bar,预计2020年可达到270Bar。
随着越来越严苛的排放标准实施,中国汽车发动机行业将发生较大变化,尤其是重型柴油机对钢活塞的需求将会日益上升,锻钢活塞的需求量将会逐年攀升,市场前景会较加宽广。
发动机活塞产品介绍
活塞在高温、高压、高负荷条件下工作,对材料、机械性能要求相对比较高,要有足够的强度、刚度,重量要轻,以保证小的惯性,导热性还要好,还需耐高温、高压、腐蚀,保证充足的散热能力,且受热面积要小。按制造活塞的材料及演变过程可分为铝合金活塞、铸铁活塞、钢活塞类。
铝合金活塞
铝合金活塞材质轻,能有效降低总成重量,密度小,大大减小了活塞的质量及往复运动的惯性力。铝合金活塞常常应用于中小缸径的中高速内燃机上,工作过程中产生的惯性小,对高速内燃机的减振和降低发动机的质量有重要意义,典型铝合金活塞如图1所示。
pagenumber_ebook=27,pagenumber_book=43
图1 铝合金活塞
铸铁活塞
现代发动机尤其是柴油机为了大幅度地提高热效率,增压程度不断提高,这使得气缸内部的热负荷明显。铝合金活塞本身固有的热强度不高、线膨胀系数较大的缺点越来越严重,使其在柴油机上的使用范围受到明显的限制。为此,在一些大负荷的柴油机上,开始采用热强度和耐磨性较高而线膨胀系数较低的铸铁活塞,铸铁的密度约为铝合金的3倍,中、小型卡车典型的铸铁活塞如图2所示。
pagenumber_ebook=28,pagenumber_book=44
图2 铸铁活塞
锻造钢活塞
以上活塞都是采用铸造工艺进行生产,随着大马力汽车发动机快速发展,尤其是重型柴油发动机涡轮增压,低排放等要求的不断提高,传统铝合金及铸钢活塞材料已无法满足使用要求。目前国外很多公司已将钢活塞应用于高性能中重型柴油机上,如曼、卡特彼勒、**、戴姆勒、沃尔沃、奔驰等公司。
钢的机械强度高,耐热性、耐蚀性以及耐磨性均**铝合金和铸铁,具有高弹性模量,优良而稳定的高温性能和比较低的线膨胀系数等优点,但缺点是密度大、加工麻烦、成本高,对缸套的磨损严重,为使活塞质量较轻,通常将钢制活塞的结构设计得十分复杂,活塞裙部断面很薄,锻造工艺难度较大,复杂系数达到S4级别,钢活塞产品如图3所示。
pagenumber_ebook=28,pagenumber_book=44
图3 商用车钢活塞
锻造钢活塞生产研究
锻造钢活塞在近几年发展比较迅速,是活塞产品的主流生产工艺,随着国家对环保力度的加强,发动机排放标准日趋严格,钢活塞产品的发展空间将会较大。锻造活塞对产品结构、形状要求严格,生产成本高,后续机加工难度比较大,在生产过程中容易产生模具寿命低、裙部充不满、裙部变形、淬火裂纹、表面质量不满足要求等问题。
活塞锻件结构分析
⑴活塞进、出油孔。
传统的钢活塞内腔进、出油孔都是通过机加工实现的,这样活塞产品内腔结构比较简单,模具内芯经过氮化处理后抗磨损性能加强,模具寿命较高。随着客户对产品要求的不断提高,原来经过机加工方式获得的进、出油孔结构需要采用锻造方式实现,这就给锻造工艺带来很大的难度,常见的活塞进、出油孔结构如图4所示。
pagenumber_ebook=28,pagenumber_book=44
图4 常见活塞进、出油孔形状
目前高压缩比活塞产品进、出油孔结构比较复杂,个别出油孔直径只有φ8mm左右,拔模角在5°~10°,这样给模具制造带来很大难度,进、出油孔直径比较小,在模具上呈现凸起结构,耐磨性差,导致模具寿命偏低。同时客户对锻件进、出油孔尺寸精度要求非常高,有轮廓度、公差的要求,轮廓度要求±0.5mm,生产过程中模具稍有磨损就可能导致轮廓度**差,产生批量废品,油孔形状如图5所示。
pagenumber_ebook=29,pagenumber_book=45
图5 高压缩比活塞进、出油孔形状
⑵锻钢活塞结构。
1)整体结构:发动机在国四排放标准之前,国内主流锻造活塞为整体结构,将活塞头与活塞裙集成为一体,锻件毛坯重量约为成品重量的2~2.5倍,经过机加工后成品重量比较轻,同时强度及性能都可以满足工况要求,活塞整体高度降低,减小了发动机高度,节约了装配空间,同时对减轻整车的重量有着积极的作用,但是这种结构的活塞加工成本较高,活塞油道环状凹槽加工难度大,对机加工设备、工艺、加工的寿命具有很大的挑战性,典型的整体锻造钢活塞产品如图6所示。
pagenumber_ebook=29,pagenumber_book=45
图6 整体钢结构活塞
2)铰接结构(钢活塞**部+铝合金裙部):大马力发动机的活塞负载很大,所以要用钢材料,而活塞是往返运动件,消耗的能量很多,这就要求重量应尽量轻一些,所以底部还是要用轻材料铝合金,这样就诞生了铰接结构活塞,如图7所示。
pagenumber_ebook=29,pagenumber_book=45
图7 铰接结构(锻钢+铝合金)
3)分体结构(钢活塞头+钢活塞裙):活塞头和活塞裙通过激光焊接组成的活塞可以满足发动机排放标准要求,同时此种活塞以高压缩比,燃烧较充分等优点将逐渐替代整体钢活塞,锻造钢活塞头及活塞裙产品如图8所示。
pagenumber_ebook=29,pagenumber_book=45
图8 分体结构(活塞头+活塞裙)
锻造过程模拟分析
活塞产品设计过程中采用Forge软件进行工艺模拟,通过对镦粗、预锻、终锻各工位数值模拟,在项目开发过程中将工艺、设计等问题的风险降到,经过几轮的工艺模拟论证,终确定数模用于模具加工制造。
⑴镦粗模拟结果分析。
镦粗工位主要控制坯料镦粗高度及去除氧化皮,镦粗高度对预锻件充满程度有很大影响,此活塞产品坯料高度由135mm镦粗至90mm。
⑵预锻模拟结果分析。
预锻是活塞产品工艺设计成败的关键,保证预锻充满良好的同时锻打力还不能**出锻造设备的额定吨位。图9所示状态均为设计厚度(N+1)mm时的模拟情况,预锻充满良好,预锻工位的锻打力在额定的设备吨位以内。
pagenumber_ebook=29,pagenumber_book=45
图9 预锻充满情况
⑶终锻模拟结果分析。
终锻工序是保证客户终产品的工位,此工位的模拟结果直接影响现场实际生产时终锻件的质量,模拟参数的设置很关键,模拟步骤设置的越细结果越接近实际生产情况。
终锻件充满情况如图10所示,由模拟结果可以看出,在厚度尺寸+1mm情况下,终锻件充满良好,这样设置模拟的目的是保证实际生产过程中锻件充满,为充满预留一定的保险系数,同时也为实际生产原材料下料提供数据参考。
pagenumber_ebook=29,pagenumber_book=45
图10 终锻充满情况
总结
锻造钢活塞是发动机活塞将来发展的趋势,也是主流生产工艺,一汽锻造公司没有该类产品的开发经验,在公司的大力支持下,项目团队临危受命,经过两年多的技术攻关实现活塞产品大批量生产,产品质量获得客户的充分认可。开发过程中获得**一项,技术创新二十余项,后续针对未关闭的项目加大研发力度,突破锻钢活塞技术、工艺难题,为公司提质、降本、增效提供强有力的支持。
某起落架锻件模具的磨损原因分析及改进措施
锻造是一种复杂的塑性加工技术,其中热模锻是较为常见和重要的锻造方式。模锻过程中锻件质量的好坏受多种因素的影响,而模具的好坏则直接影响锻件的质量、成本、生产率和市场竞争力。实际锻造过程中,锻模通常在较高的动载荷或静载荷反复作用下工作,其工作应力较高,工作条件非常苛刻,工作时锻模的预热、冷却、润滑、氧化皮影响等,都直接影响模具使用情况,所以要尽可能的去改善,以延长模具的使用寿命。
前期我公司生产的一种航空起落架模锻件的模具磨损情况较为严重,修模频率较高,严重影响着产品的制造周期和成本。本文基于这一实际问题,首先通过对生产现场的还原,分析了模具磨损严重的原因;然后通过现场试验,找到了改进措施;终通过产品批量生产来进行验证,模具磨损严重的问题得到了有效解决。
原因分析
从图1(a)可以看出,模具型腔高包处温升严重;经测温后,该处模具型腔表层温度在650℃以上。其主要原因是坯料的始锻温度很高(>1000℃),连续生产时模具型腔温度通常在400℃以上,有时甚**达600℃,采用石墨润滑剂后生成的润滑膜失去了原有的润滑效果;同时在此高温条件下,也会给操作工人的喷洒润滑工作带来很大困难,往往会有润滑不均匀、不到位的情况。
在这样的情况下,锻件在成形过程中就会与模具型腔发生干摩擦,导致模具型腔局部温升严重,表层温度与热扩散层深度将迅速增加,从而使模具表面硬度下降,模具抗变形与抗磨损能力均减弱;在较大、复杂的交变载荷作用下,成形较复杂的型腔部位将会发生变形。图1(b)为模具冷却后模具型腔真实损坏情况,从图中可以看出,该处已严重变形、塌陷,无法满足锻件正常生产。
使用该模具期间,生产的锻件多件出现了局部缺肉现象(图2)。当缺肉量较大时,将会影响到零件的加工,甚至有产品报废的风险。经过对模具型腔的检查,发现模具型腔对应位置已经发生严重变形和塌陷。初步判定:锻件缺肉和模具型腔对应位置的变形、塌陷有很大关系。
pagenumber_ebook=43,pagenumber_book=59
图1 实际生产过程和冷却后模具的状态
pagenumber_ebook=43,pagenumber_book=59
图2 锻件局部缺肉
解决措施
针对上述问题,我公司技术人员经过分析论证,提出了如下解决措施。
⑴模具修复。
目前模具已无法满足锻件正常生产要求,须对模具进行及时维修(补焊、气刨、打磨等)以防缺陷(圆角处隆起、凸起部分变形、塌陷)进一步扩大。修模后要求模具型腔光滑,如图3所示。
pagenumber_ebook=43,pagenumber_book=59
图3 修模后模具型腔状态
⑵合理降温。
锻造过程中,模具温升是不可避免的,所以实际生产中要严格模具型腔温度;若模具型腔温度过高,会使得型腔退火,硬度降低,造成模具过早塌陷磨损。当每件锻件压制完成后,先用风管进行风冷降温,并去除干净型腔内杂物。
⑶充分润滑。
生产过程中要对模具进行充分润滑。当模具型腔温度降至400℃以下时,向模具型腔均匀喷洒石墨润滑剂,即起到模具润滑作用。锻件压制前,上下模的模具型腔均加盖一种带润滑功能的复合纤维布(图4),以进一步提升润滑效果。
pagenumber_ebook=43,pagenumber_book=59
图4 模具型腔加盖带润滑功能的复合纤维布
结果验证
采用上述措施后,连续生产20余批次的锻件进行了现场验证。每批次生成完成后,进行模具型腔表面检查,发现模具表面质量仍然良好,现只需要通过简单地局部打磨光滑甚至不打磨,就可满足正常生产要求。这样一来,大幅减少了模具修模次数,提高了生产效率。
图5为优化后终锻件成形情况。从图中可以看出,锻件表面无成形缺陷,缺肉问题得到有效解决。
pagenumber_ebook=43,pagenumber_book=59
图5 优化后终锻件成形情况
结论
通过修复模具、合理降温、合理润滑等措施,解决了模具长期容易局部磨损、变形甚至塌陷的问题,有效解决了锻件成形缺肉的问题。
基于数值模拟的多楔带轮成形工艺研究
带轮作为一种重要的传动零件, 广泛应用于汽车、农机、水泵以及机床等机械设备传动中。带轮传统加工方法是采用铸、锻毛坯经切削加工而成,特点是浪费材料、生产效率低,产品具有精度低、笨重、转动惯量大等缺点。随着科学技术的发展进步,锻压及旋压技术以其节能节材、生产效率高、产品性能好、合格率高等优点,逐步推广应用到带轮的实际生产中。
带有凸台的多楔带轮的成形采取锻压与旋压相结合的成形工艺,而关于影响复杂结构多楔带轮成形质量的工艺参数,并没有明确的研究结果可以参考,故零件生产多结合有限元模拟和试验分析得到较为合适的参数,并在此基础上进行下一步的优化。根据材料的拉伸系数计算拉伸道次,结合冲压与锻造技术并采用有限元模拟软件DEFORM-3D进行数值模拟,分析成形过程中的应力、应变分布,为锻压成形多楔带轮的实际生产提供参考。
零件结构分析
带有凸台的多楔带轮结构如图1、图2所示,在旋压成形多楔齿之前需经过锻压成形内筒及凸台,其中凸台的成形难度较大。多楔带轮材料为DD13钢,基本力学性能如下:屈服强度为325MPa,密度为7.851g/cm3,弹性模量为205GPa,泊松比为0.29。
pagenumber_ebook=32,pagenumber_book=39
图1 多楔带轮结构图
pagenumber_ebook=32,pagenumber_book=39
图2 多楔带轮三维示意图
锻压成形工艺分析
根据体积不变原理,利用Pro/Engineer对多楔带轮体积进行计算,同时考虑预留加工余量,确定选用厚度为3mm,直径为206mm的板坯进行制坯。根据零件结构特点制定其锻压成形工艺路线:多道次拉深成形内筒→冷锻内筒→成形凸台→成形外圆弧。
内筒的多道次拉深成形工艺参数可查询冲压手册,为尽可能降低板坯减薄程度,设计三道次拉深成形内筒。通过查阅带凸缘拉深系数表并且结合生产实际,设计次拉深系数m1=0.52。由拉深系数计算公式:
pagenumber_ebook=33,pagenumber_book=40
其中,m为拉深系数,d为筒壁直径(mm),D为毛坯直径(mm)。计算得拉深直径为d1=107mm。后两道次拉深系数通过查询冲压手册并结合实际取m2=0.75,m3=0.77。故拉深直径分别为d2=80mm,d3=61.3mm。凹模圆角半径的计算公式如公式2所示:
pagenumber_ebook=33,pagenumber_book=40
其中,t 为坯料厚度(mm),D 为毛坯直径(mm),d为次拉深后筒壁直径(mm)。计算出*1次拉深中凹模圆角半径r1为14mm。由此可确定出后续拉深的凹模圆角半径为:r2=10mm,r3=7mm。由于内筒的成形属于变薄拉深,在经过三道次的拉深成形之后需经过冷镦工步对内筒筒壁增厚,故**道次的拉深高度需大于零件内筒的图纸尺寸,结合实际生产经验**道次拉深高度为h=24mm。
有限元模型建立
利用Pro/Engineer建立工件和各道次模具的三维模型,基于Deform-3D软件对多道次成形过程进行模拟分析,模拟采用“SI”公制单位,实际生产中材料为DD13,模拟选择材料库中与之相近的AISI-1008,坯料设置为塑性体,模具为刚性体,网格数量划分为150000个,并运用局部网格细化技术对坯料中间部分进行网格细化分。根据生产实际将摩擦因数设置为0.12,冲压速度为10mm/s,温度为20℃。图3所示为道次模具结构。
模拟结果分析
pagenumber_ebook=33,pagenumber_book=40
图3 *1道次拉深成形模具图
pagenumber_ebook=33,pagenumber_book=40
图4 至*三道次等效应变分布图
道次至*三道次有限元模拟的等效应变分布如图4所示。由图4(a)可见应变值较大处出现在内筒上下圆角处,即内筒上下圆角处变形程度较大。由于*二道次和*三道次的拉深高度不再变化,只在筒径上发生变化,故内筒的上侧圆角处应力较为集中,如图4(b)和图4(c)所示。*三道次筒径缩小到61.3mm,已近似于零件内筒直径61mm,此时内筒圆角及筒壁处壁厚发生了减薄。有限元模拟过程中未出现刮料、折叠缺陷,成形质量较好。
*四道次冷镦成形内筒。由于**道次的拉深使内筒筒壁及圆角处有所减薄,所以冷镦内筒的目的是增厚内筒筒壁及内筒上侧圆角以保证后续零件的成形质量。冷镦工艺是一种精密塑性成形技术,具有制品的机械性能好、生产率高和材料利用率高,特别适合于大批量生产等优点。由图5等效应变分布图可知,坯料内筒上圆角处应变值较大,因上圆角处圆角半径较大,在上模下压时坯料上圆角处与下模发生刮蹭,故出现应力集中的现象。从成形结果上看内筒筒壁及上侧圆角处金属充填饱满,满足后续加工要求。锻压成形过程中载荷出现在该道次,*四道次载荷图如图6所示,载荷为184吨。
pagenumber_ebook=34,pagenumber_book=41
图5 *四道次等效应变分布图
pagenumber_ebook=34,pagenumber_book=41
图6 *四道次载荷图
*五道次冲压预成形凸台以及轮辐与内筒相接的圆角,*六道次通过局部加载凸台处的上模具将凸台锻造至零件要求壁厚。通过锻造工艺使凸台处近净成形,减少机加工量;同时使金属材料向四周圆角处流动充填,提高产品表面光洁度和产品精度;并且可以改变金属组织,提高金属性能。*五道次至*六道次等效应变分布图如图7所示。成形过程中没有出现刮料、折叠等缺陷,但是从图7(b)可见凸台圆角处未充填饱满,这是由于凸台高度较高,冲压过程中减薄较严重引起的。
pagenumber_ebook=34,pagenumber_book=41
图7 *五道次至*六道次等效应变分布图
工艺优化
为解决成形方案中凸台圆角处充填不饱满的问题,考虑在成形凸台之前增加一道次,在内筒与轮辐之间作圆弧过渡,使坯料在凸台处聚料,后两道次按照成形方案的模具进行模拟。增加在凸台处聚料的道次及成形凸台后一道次的应变分布图如图8、图9所示。从成形结果看,凸台圆角处充填饱满,并且没有缺陷产生,成形效果较好,故该成形方案可以有效地解决凸台处减薄严重的问题。对比各道次等效应变值可以发现,随着道次的增加,材料内累积的应变值越来越大。
pagenumber_ebook=35,pagenumber_book=42
图8 增加道次的等效应变图
pagenumber_ebook=35,pagenumber_book=42
图9 凸台成形等效应变图
后一道次冲压成形外圆弧,该道次是为后续旋压成形轮缘及多楔齿做准备,等效应变图如图10所示。可见内筒上圆角和凸台处的应变值较大。终成形结果图如图11所示,成形效果良好。经过测量各处壁厚均达到后续加工要求。
试验验证
根据模拟分析结果,利用YQK-200型液压机进行试验,得到了合格的样件,多楔带轮锻压试件如图12所示。可以看出凸台部分成形质量较好,试件表面光洁度较高,未出现刮料、叠料等现象,经测量试件各关键部位处壁厚均达到后续加工要求。通过试验验证了该锻压工艺的正确性,可为实际生产提供。
结论
pagenumber_ebook=35,pagenumber_book=42
图10 终成形等效应变分布图
pagenumber_ebook=35,pagenumber_book=42
图11 终模拟结果图
pagenumber_ebook=35,pagenumber_book=42
图12 多楔带轮锻压试件
通过对双凸台多楔带轮锻压工艺方案进行深入分析,将冲压工艺和锻造工艺相结合,采用有限元软件Deform-3D对其成形工艺进行了数值模拟,分析了其成形过程中的应力应变分布,并进行了工艺试验验证,结论如下。
⑴双凸台多楔带轮结构较复杂,为控制内筒的减薄程度,内筒需采用多道次拉深成形,结合材料的拉深系数计算拉深道次,并计算各道次拉深的工艺参数。成形过程中应变主要集中在内筒上下圆角处,有轻微的减薄,后续通过冷镦工艺对筒壁及圆角处进行了有效增厚。
⑵凸台的成形需结合冲压技术和锻造技术,控制金属流动方向和速度,保证其成形质量。并通过工艺优化解决了凸台处壁厚减薄严重的问题。
⑶结合有限元模拟结果,通过试验验证了工艺的可行性,得到了符合要求的锻压件。
耙斗装岩机工作流程以及如何安全操作
耙斗装岩机是通过绞车的两个滚筒分别牵引主绳、绳尾使耙斗作往复运动把岩石扒进料槽,自料槽卸料口卸入矿车或箕斗而实现装岩作业。该机主要由固定楔、尾轮、耙斗、台车、绞车、操纵机构、导向轮、料槽(进料槽、中间槽、卸料槽)以及电气部分等组成。PB系列耙斗装岩机具有效率高、结构紧凑、应用范围广等特点。用于巷道掘进中配合矿车进行装岩。不仅可以在30°以下上山、下山巷道装岩,还可以进行掘进工序的平行作业,提高掘进速度,是实现巷道掘进机械化的主要机械设备之一。
为了防止在耙斗装岩机工作过程中的故障及事故的发生,机器在使用中应当严格遵守下列各项。电气维修:该设备以电为动力,在调整、检修或更换部件的工作开始之前,一定要确保切断了这台机器的所有电源。不要在机器上连接临时性电缆:如果触到高压电, 会造成严重的电击伤亡。在开动机器或操作任何控制装置前,操作人员必须事先阅读使用说明书,接受过如何正确操作机器的培训,并且完全熟悉所有控制装置。绝不可在仅靠液压支撑的部件下方工作。要安设足够的垫块支撑住载荷。
河南亚兴精锻股份有限公司创建于2003年,公司位于国家文化名城—郑州市文化路航天商务大厦,生产厂区位于黄河之滨、中原福地的平原新区,占地37.5亩,规划生产车间面积12000平方米。亚兴公司是研发制造、生产销售各种型号矿用刮板运输机配件及各行业所需的精锻件的主要骨干企业和供货商。公司建有现代化生产基地,拥有高、中级技术人员20多名和模具制造、锻造、机加工、热处理、装配等标准化生产单元;拥有**业中的电动螺旋2500吨、1600吨、1000吨压力机和1250kw、750kw、500kw中频感应透热炉三条生产线,台式电阻炉热处理生产线三条,加工中心、数控机床10余台及光电线切割机、数控锯床、钻床、拉床、预处理喷丸机、产品检测仪等设备,年生产能力**万吨。主营产品:各类刮板、E型螺栓、哑铃销、驱动链轮、横梁、齿轮、链条等几十种矿用机械配件、上百种型号,同时还生产加工综合机械锻造配件等。全部产品严格按照国家和行业标准研发设计、生产制造,并荣获郑州市“重质量守信用良好单位”称号等,2004年通过国家矿用产品安全标志检验证书,2009年通过了ISO9001:2000**质量体系认证,2011年国家工商总局颁发了“YX亚兴”注册商标认证。