实践振动时效替代热时效后可节约能源90%以上,提高抗变形能力30%以上,尺寸稳定性提高30%以上,疲劳寿命提高20%以上。处理时效通常只需15—45分钟,不分场地,不受工件尺寸、形状、重量等限制,可处理几公斤至几百吨的工件。便携工件不需运输可就地处理,可插在任何工序之间进行处理。采用振动时效可提高工效几十倍,它具有减少环境污染、缩短生产周期、改善劳动条件、工艺简便等优点振动时效适应于碳素结构钢、低合金钢、不锈钢、铸铁、有色金属(铜、铝、锌及其合金)等铸件、锻件和焊接件及其机加工件。
振动消除应力系统生产厂家 结构超声波振动消除应力 高频振动去应力设备效率 应力消除振动时效设备 豪克能焊接应力消除设备 振动消除焊接应力 消除焊接残余应力 怎么消除焊接应力
培训内容:
1、振动时效设备的原理;
2、振动时效设备的组成;
3、振动时效设备的使用及操作;
手动工作模式及操作方法、自动工作模式及操作方法、激振器档位的调节。
4、操作设备时的注意事项;
5、典型工件的装卡、支撑及拾振器的安装位置;
培训步骤:
1、 简单说明设备原理;
2、 介绍设备的组成:主控制箱、激振器、拾振器、打印系统、弹性胶垫、附属装卡工具及相关连接线,打印纸的安装。
3、 设备的操作步骤及注意事项;
⑴、振前准备;橡胶垫的支撑位置、激振器的卡位、拾振器的安放位置等。
⑵、自动及手动模式工作操作;
⑶、操作的注意事项及激振器档位的调节。
4、客户操作人员问题解答;
振动消除应力系统生产厂家 结构超声波振动消除应力 高频振动去应力设备效率 应力消除振动时效设备 豪克能焊接应力消除设备 振动消除焊接应力 消除焊接残余应力 怎么消除焊接应力 常用的消除焊接 利用振动法消除焊接残余应力 振动焊接 与超声波焊接 振动消除应力的原理 振动消除应力1、全自动工作模式。
运用先进的数字信号处理技术,对拾振器采集的振动信号进行实时在线统计、分析,选取有效的激振频谱参数,可全自动完成频谱振动时效工艺过程,在同一坐标内自动绘制振动时效工艺曲线及工艺参数;
2、可预置局部扫频和频带扫频。
根据工件需要,系统可设有效频谱时效工作段为n转/分以内,n转/分以上为高频振峰区,为无效工作,那么在系统启动前,可设定频谱时效范围为n转/分,从而起到保护工件和提高效率的目的。根据工件需要,系统可设置有效工作频谱工作带为n-m /分之间,那么在系统启动前,可设定n转/分为频谱振动起始点,n-m /分为频谱振动区域,m转/分为终止频谱振动节点。从而实现频谱振动效果达到状态,提高工作效率。
3、多峰振动时效处理。
对系统扫频范围内的谐振峰按工艺要求,进行任意排序并预置,分别对各谐振峰进行振动时效处理,可设定扫频范围,对各谐振峰可任意设定和预置时间,并可根据工艺要求进行再现调整。
4、故障自动识别功能。
该系统配有故障自检程序,提供故障出现的原因及处理方法,对任何工件都能通过计算机优化选择5个谐振频率,2个备用谐振频率,自动控制激振器对工件进行时效处理
5、美国原装进口真彩液晶。
同时显示三个方向应变值及主应力、主方向,无须手动按键切换,可同时接应变片及加速度计两种传感器工作。
全自动振动时效装置 振动时效装置所用激振器功率 振动时效装置价格 振动时效装置能自动停止吗 微电脑振动时效装置 振动时效厂家 全自动振动时效装置测试视频 振动时效原理及应用 超声振动时效工艺 振动时效机能处理长轴类工件吗 振动时效机品 振动时效 机加 bf系列振动时效机 振动时效厂家
振动时效重要的工艺参数为:激振频率、激振力、实效时间、激振器及拾振器的装夹位置。任何设备均不可预知构件的时效要求,更不可能判定构件的有效振型,从而确定合理的时效参数。只有操作人员根据时效要求,观察构件的各阶振型,选择有效的工艺参数。采用手动工作方式,可快速了解构件的特性,选取合理的激振及拾振位置,确定的激振频率和激振力。同时,为了满足批量构件及简单构件的时效要求,被系统增设了手动时效功能,可自动绘制时效曲线及相关数据,为产品检查提供宏观依据,时效时间可在线任意调整
振动处理是对构件施加一交变应力,而残余应力相当于平均应力而改变了总应力水平。但在交变应力作用下,残余应力是一个不稳定的力学量,在振动处理过程中逐渐下降,使总应力水平降低。从图23中可以看到在振动处理过程中残余应力的变化情况,当材料受到等幅交变作用(εc—εB)时,如果材料已经屈服,则残余应力下降。设处理前的残余应力为σA,回线ACB是次交变循环时的应力和应变曲线。当总应力超过A点后,材料进入塑性直到C点。而C B又平行于弹性线,CB末端却又偏离弹性线。这些现象都是由包辛格效应所致。经过一定次数的循环后应力和应变均处于稳定的回线上。如图中曲线所示,残余应力由σA下降到σE而不再变化。
图23和图21从原理上来说是相同的,都说明要使构件中的残余应力下降,必须使作用应力与残余应力叠加后大于材料的屈服极限,即: σ动+σ残>σs
如果残余应力下降后作用应力与残余应力之和小于屈服极限时,则构件保持稳定的应力状态。因此振动处理到一定周次后不提高作用应力的量值,则继续处理将不再起作用。
时效方法简介
构件在冷热加工过程中,必然产生余应力,因此消除余应力的时效工序就十分必要了,凡是能降低余应力,使工件尺寸精度稳定的方法都叫“时效”。主要方法有热时效、自然时效、振动时效、静态过载时效、热冲击时效等。后两种方法应用少不再讲述。
§3.1自然时效
自然时效是较古老的时效方法。它是把构件露天放置于室外,经过几个月至几年的风吹.日晒.雨淋和季节温度的变化,给构件多次造成反复的温度应力。在温度应力形成的过载下促使余应力发生松弛而使尺寸精度获得稳定。
自然时效降低的余应力不大,但对工件尺寸稳定性很好,原因是工件经过长时间的放置石墨及其它线缺陷附近产生应力集中,发生了塑性变松弛了应力,同时也强化了这部分基体,于是该处的松弛刚度也提高了,增加了这部分材质的抗变形能力,自然时效降低了少量余应力,却提高了构件的松弛刚度,对构件的尺寸稳定性较好,方法简单易行,但生产周期长.占用场地大,不易管理,不能及时发现构件内的缺陷,已逐渐被淘汰。
§3.2热时效
热时效是将构件由室温缓慢.均匀加热至550℃左右,保温4—8小时,再严格控制降温速度至150℃以下出炉。
热时效工艺要求是严格的,如要求炉内温度差不大于±25℃,升温速度不大于50℃/小时,降温速度不大于20℃/小时。炉内温度不许超过570℃,保温时间也不易过长,如果温度高于570℃,保温时间过长会引起石墨化使构件强度降低。如果升温速度过快,构件在升温中薄壁处升温速度比厚壁处快的多,构件各部分的温差急剧增会造成附加温度应力。如果附加应力与构件本身的余应力叠加超过强度极限,就会造成构件开裂。热时效降温不当,会使时效效果大为降低,甚至产生与原余应力相同的温度应力(二次应力),并残留在构件中,从而破坏了已取得的热时效效果。
热时效存在的问题: 建窑占地面积大,费用高(每立方米1—1.2万元)。 热时效能耗高,生产成本高。热时效炉内温度不均匀,升降温速度无法严格控制。
余应力检测法
5.3.1 可使用X 射线衍射法、盲孔法和磁测法。
5.3.2 检测点应选在工件的重点部位或有效振型的重点部位。
5.3.3 被振工件振前、振后的余应力检测点数均应大于五个点。
5.3.4 用振前余应力平均值(应力水平)、振后余应力平均值来计算应力消除率,焊接件的应力消除率应大于30%,铸、锻件、模具、机加工件的应力消除率应大于20%。
5.3.5 用振前各点余应力对其平均值的差值的值去比较振后的该值来衡量应力均化程度,振后的应小于振前的。
..陕西安烨顺电子科技有限公司专业从事机械设备、智能自动化设备、机械零部件、电子产品及配件和振动时效设备研发、生产、销售为一体的实业公司:服务于航空航天、船舶重工、**、机械加工、汽车制造、重型机械、科研院所、检测机构、高校、等领域。公司拥有经验丰富、技术精湛的*团队、业务娴熟的技术工程师和训练有素的销售人员,以客户需求为出发点,注重产品技术和质量,为客户提供较适合的产品技术方案以及较及时、周到的售前、售后服务。真诚欢迎您来电,将我司较好的服务带给各界人士..