从宏观角度分析振动时效使零件产生塑性变形,降低和均化余应力并提高材料的抗变形能力,无疑是导致零件尺寸精度稳定的基本原因。从分析余应力松驰和零件变形中可知,余应力的存在及其不稳定性造成了应力松驰和再分布,使零件发生塑性变形。故通常采用热时效方法以消除和降低余应力,特别是危险的降值应力,振动时效同样可以降低余应力,零件在振动处理后余应力通常可降低30—80%,同时也使峰值应力降低使应力分布均匀化。
从微观方面分析振动时效可视为一种以循环载荷的形式施加于零件上的一种附加动应力,众所周知工程上采用的材料都不是理想的弹性体,其内部存在着不同类型的微观缺陷,铸铁中更是存在着大量形状各异的切割金属基体的石墨。故而无论是钢、铸铁或其他金属,其中的微观缺陷附近都存在着不同程度的应力集中,当受到振动时,施加于零件上的交变应力与零件中的余应力叠加。当应力叠加的结果到一定的数值时,在应力集中严重的部位就会超过材料的屈服极限而发生塑性变形。这种塑性变形降低了该处余应力降值,并强化了金属基体,而后振动又在一些应力集中较严重的部位上产生同样作用,直至振动附加应力与余应力叠加的代数和不能引起任何部位的塑性变形为止,此时振动便不再产生消除和均化余应力及强化金属的作用。
底座振动时效处理
1.振动时效处理
a.主振:根据工件的结构特点采用四点支撑,激振点、拾振点具体位置见照片3。采用手动处理,激振频率4670RPM/min,时效时间30分钟,偏心档位8档。
b.振动:原支撑不变,激振点、拾振点旋转90°,采用手动处理,激振频率4720RPM/min,时效时间30分钟,偏心档位不变。
2.残余应力检测:为了验证振动时效效果,对构振前振后焊接残余应力测试。测试方法选用盲孔松弛法,测点选择14点测点分布见图3,测试结果列在表二中。
表二 底座振动时效测试数据表 单位:MPa
点号 δ1 δ2
振前 振后 消除率 振前 振后 消除率
1 280.90 201.72 -28.19 16.48 6.88 -58.27
2 227.86 153.40 -44.79 81.74 41.93 -48.71
3 431.62 221.26 -48.74 262.16 64.54 -75.38
4
5 171.13 115.28 -32.63 9.62 2.41 74.89
6 251.44 136.90 -45.55 111.71 52.38 -53.11
7 200.82 163.27 -18.70 9.10 5.34 -41.35
8 137.92 96.80 -29.81 31.01 24.73 -20.26
9 130.67 95.86 -26.64 12.64 7.02 -44.46
10 187.61 128.43 -31.54 61.64 28.73 -53.39
11 242.37 145.12 -40.13 33.36 25.98 -22.11
12 240.76 151.70 -36.99 250.62 62.19 -75.19
13 213.33 104.40 -51.06 51.38 33.24 -35.30
14 179.57 131.41 -26.82 55.97 30.83 -44.91
平均应力 226.62 141.96 -35.51 75.95 29.71 -49.79
注:测点4应变片损坏
3.结果分析
从测试数据上看,振前平均主应力为226.62MPa,振后平均主应力为141.96MPa,降率为-35.51%。且均化较好。
4.结论
本次工艺处理,残余应力下降率为-35.51%。且均化较好。完全满足了国家行业标准JB/T5926-2005标准要求。说明连铸机底座工件采用振动时效去应力,效果较好,工艺可行
转数范围:2000 R/Min-8000 R/Min;
激振力调整范围:0-50KN;
电机额定功率:1500W;
适宜处理工件重量:≤30吨
稳速精度:±1R/Min;
加速度量程:0-50.0g;
电机额定电流:10A;
电机额定电压:150V;
供电电源电压:交流220V±10%,50HZ±4%;
绝缘等级:E级;
工作条件:环境温度:-10℃—+40℃;相对湿度:不大于80%(25℃);
据船体分段结构的特点,及多次反复试振,确定工艺参数如下:
(1)支承方式:底部四点支承(如图2所示),由于本次处理受现场条件约束,用建造墩支承。
(2)激振点:如图2所示激振器安装在筋板平面上,用卡具卡紧。
(3)拾振位置:底板端部平面处。
(4)激振器偏心:用IFSVSR-2001型设备,偏心为“4档”。
(5)激振频率:通过扫频可见在VSRDS-08设备频率范围内有两个共振峰,在2855转/分和3195转/分左右,处理时可由加速度辐值来控制。
(6)处理时间:20~30分钟。
2.振动处理监测曲线与分析
船体分段在振动处理时给出了监测曲线(见下页),根据JB/T5926.2005机械行业标准的规定,监测曲线中出现下述三种情况之一,即认为振动处理达到了效果:
其一,时间振幅曲线[G(T)],随着时间在发生变化,即上升型、下降型均可(可由曲线指示或数字显示读数均可)。
其二,幅频特性曲线的对比,振后曲线(虚线)峰值升高。
其三,幅频特性曲线的对比,振后曲线(虚线)峰线左移即频率下降(可由曲线观察或上面数字显示看出)。
根据上述有关规定,观察我们对船体分段处理时获得的曲线图,可以看出:
船体分段的曲线图上时间振幅曲线[G(T)],呈下降型,峰值升高0.2g,峰点的频率从3195转/分变到3130转/分,下降65转/分,由此可以得出结论,本次处理是有效果的。
转数范围:2000 R/Min-8000 R/Min;
激振力调整范围:0-50KN;
电机额定功率:1500W;
适宜处理工件重量:≤30吨
稳速精度:±1R/Min;
加速度量程:0-50.0g;
电机额定电流:10A;
电机额定电压:150V;
供电电源电压:交流220V±10%,50HZ±4%;
绝缘等级:E级;
工作条件:环境温度:-10℃—+40℃;相对湿度:不大于80%(25℃);
振动时效技术在108吨矿用重型汽车车架上的应用经过多次的试验研究,采用振动时效技术降低108吨汽车车架焊接残余应力方面取得了显着的效果。
试验证明,只要振动时效参数选择合理,完全可以用振动时效代替热时效,提高焊接构件疲劳寿命。特别是对108吨汽车车架(全长L=9001mm,重约10吨)等大型焊接构件(见图14),具有比热时效方便、省时、节约能源等突出特点。
在水工金属结构、水力机械行业,广泛存在特大型构件、多种材质组合件、现场焊接构件等特殊水工构件,由于不具备特大型退火炉,而且处理时间长、运输困难,无法采用热时效进行消除应力处理。如浙江省水利水电勘测设计院(简称我院)设计的浙江省白水坑水电站压力钢管出口处的钢岔管,为卜型岔管,主要直径3.85m,两只管直径各为2.27m,岔道全长10.78m,宽7.35m,材质为16Mn,重量36000Kg,承压静水头115m。该工件结构复杂,由多片不规则钢板及较厚的月牙肋组焊而成,存在着较大的焊接残余应力,尤其是在月牙肋与主管和支管间的焊缝附近。由于该岔管属于大型焊接构件,因此迫切需要寻求一种可靠、高效的消除残余应力工艺方法。
2 振动时效工艺
振动时效工艺(Vibratory Stress Relief)简称VSR技术,自20世纪70年代末从国外引进,经过国内的系统研究和消化吸收后,近年来不仅已在航天航空、石化、机床、机车车辆、冶金、造船、矿石机械、水工机械、等行业推广使用,而且还制定了相应的行业指导技术文件和推荐标准——HB/Z229—93《振动时效主要参数及技术要求》,以及JB/T5926—91《振动时效工艺参数选择及技术要求》。这些足以说明振动时效技术、已成熟,并已有据可依。
振动时效是基于谐波共振原理,将激振器产生的周期性振动力通过共振因子放大,从而使被处理的构建获得相应的能量,此能量相当于热时效的热能,驱使工件内原子产生更大的振动,材料发生局部屈服,使晶体内部错位和晶界产生微观滑移,引起微观塑性变形,致使残余应力在量值上减少和整体应力在较低水平上的重新分布;在宏观上,通过外加的交变应力与工件内残余应力叠加使工件在较大残余应力区产生局部屈服,从而引起应力松弛和残余应力在量值上的减低。它不会改变材料的机械性能,也不会引起任何材料金相组织的变化。
压力钢管在制作过程中会产生较大的残余应力,尤其是岔管,由于结构复杂,焊接后其内部残余应力较大,为**钢岔管运行的可靠性,必须对焊接后的岔管进行消除残余应力处理。降低残余应力的方法在DL5017—93《压力钢管制造安装及验收规范》有明确规定。由于热处理的工艺设备投资大,处理时间长,且大口径岔管整体热处理后运输难度大,而振动时效技术作为一种高效节能技术,在相关行业已成熟应用,其设备便携,操作方便,对要求不改变构件材料金相组织的压力钢管来说,是一种高效地处理其残余应力的方案。
3 白水坑水电站钢岔管的振动时效处理
白水坑水电站装机容量2*20MW,为引水式水电站,设计静水头115m,一管二机布置,压力钢管出口处的钢岔管为卜形岔管,由厚度20.22.25mm的钢板卷拼成型,岔管月牙肋的厚度70mm,材料均为16Mn。该岔管的进口端中径3850mm,出口端中径各为2270mm,重量36000kg,于2002年9月由浙江省正邦水电建设有限公司制作完成。由于在岔管的成型和焊接使会产生大量的残余应力,我院设计要求岔管应经过退火消除残余应力处理,而就近的退火炉根本无法满足该岔管的退火工艺要求,且工程建设施工周期十分紧迫。经过多次消除残余应力方案研究及论证,并委托水利部产品质量标准研究所对岔管固有频率进行估算,认为采用振动时效技术降低及均化岔管残余应力是可行的。鉴于全国振动时效技术的推广中心华东分中心长期使用振动时效技术的经验,为此经业主、设计、监理等有关各方协商,本次白水坑水电站钢岔管的振动时效处理委托该中心进行。
2002年10月23~25日,水利部全国振动时效技术推广中心华东分中心携设备赴白水坑水电站施工现场对上述钢岔管进行振动时效消除应力处理。业主、设计、制作、监理、等有关各方常见本次实施过程。
3.1 岔管振动时效处理工艺方案
转数范围:2000 R/Min-8000 R/Min;
激振力调整范围:0-50KN;
电机额定功率:1500W;
适宜处理工件重量:≤30吨
稳速精度:±1R/Min;
加速度量程:0-50.0g;
电机额定电流:10A;
电机额定电压:150V;
供电电源电压:交流220V±10%,50HZ±4%;
绝缘等级:E级;
工作条件:环境温度:-10℃—+40℃;相对湿度:不大于80%(25℃);
提供重大及重点工程项目的大型金属结构的振动时效现场技术咨询与技术服务;
提供余应力检测服务,保证检定结果的真实性及性;
提供各种金属材料的材料力学性能检验,结构设计和强度分析检验,疲劳强度和疲劳寿命试验;
提供不锈钢及铝合金等材料的振动时效处理及余应力检测;
为用户的金属结构件提供现场振动时效处理;
为您提供振动焊接服务;
..陕西安烨顺电子科技有限公司专业从事机械设备、智能自动化设备、机械零部件、电子产品及配件和振动时效设备研发、生产、销售为一体的实业公司:服务于航空航天、船舶重工、**、机械加工、汽车制造、重型机械、科研院所、检测机构、高校、等领域。公司拥有经验丰富、技术精湛的*团队、业务娴熟的技术工程师和训练有素的销售人员,以客户需求为出发点,注重产品技术和质量,为客户提供较适合的产品技术方案以及较及时、周到的售前、售后服务。真诚欢迎您来电,将我司较好的服务带给各界人士..