山东邹平中博环保科技有限公司供应光氧催化废气处理设备。UV光解设备光氧催化除臭设备。
有机的废气对人体产生的危害是多方面的,不同行业的有机物的废气的毒性也是不会相同,目前国内外对治理挥发性有机废气即voc废气开展了大量的研究和应用,下面介绍几中常用对的voc有机废气处理的技术:
1、吸附法:利用某些具有吸附能力的物质如活性炭、硅胶、沸石分子筛、活性氧化铝等具有多孔材料吸附有害成分而达到消除有害污染的目的。
吸附法的优点在于去除效率高、能耗低、工艺成熟、脱附后溶剂可回收。缺点在于是设备庞大,流程复杂,投资后运行费用较高且有二次污染产生,当废气中有胶粒物质或其他杂质时,吸附剂易中毒。
2、溶剂吸收法:以液体溶剂作为吸收剂,使废气中的有害成分被液体吸收,从而达到净化的目的,其吸收过程是根据有机物相似相溶原理,常采用沸点较高、蒸气压较低的、作为溶剂,使 VOC 从气相转移到液相中,然后对吸收液进行解吸处理,回收其中的 VOC,同时使溶剂得以再生。
3、热破法:热破法分为直接燃烧法、催化燃烧法和浓缩燃烧法。其破机理是氧化、热裂解和热分解,从而达到治理VOCs的目的。
4、生物处理法:生物处理技术应用于有机废气的净化处理是近几年才开始的,是一项新兴的技术。常见的生物处理工艺包括生物过滤法、生物滴滤法、生物洗涤法、膜生物反应器和转盘式生物过滤反应器法。
5、光催化氧化法:光氧催化废气处理设备的技术是利用特种紫外线波段(C波段),在特种催化氧化剂的作用下,将废气分子破碎并进一步氧化还原的一种处理方式。废气分子先经过波段高能紫外光波破碎有机分子,打断其分子链;同时,通过分解空气中的氧和水,得到高浓度臭氧,臭氧进一步吸收能量,形成氧化性能更高的自由羟基,氧化废气分子。
右根据不同的废气成分配置多种复合惰性催化剂,提高废气处理的速度和效率,从而达到对废气进行净化的目的。
有机废气处理voc方法除了以上几种处理方法之外,还包括高温及触媒燃烧法、臭氧分解法和电化学氧化法等。这些方法也同样适用于voc有机废气的处理,但具体采用哪种方法处理voc效果更好,则取决于废气浓度、设备装置和环境温度等条件。
光氧催化
工作原理
(1)、利用特制波段(157 nm -189 nm)的高能紫外线光束照射有机废气和恶臭气体,快速裂解废气和恶臭气体的分子键,瞬间打开和改变其分子结构,破其核酸,产生一系列光解裂变反应,重新进行DNA分子排列组合,降解转变为低分子化学物,如CO2和H2O水分子等物质。
(2)、利用特制波段(157 nm -189 nm)的高能紫外光波照射分解空气中的氧分子产生游离氧,即活性氧,因游离氧所携正负电子不平衡所以需与氧分子结合,进而产生臭氧);被紫外光波裂解后呈游离状态的污染物分子与臭氧氧化结合成小分子无害或低害的化合物。如CO2分子、H2O水分子 等。
(3)、利用特制的TiO2二氧化钛光触媒催化氧化过滤棉,在UV紫外光的照射下,产生光触催化反应,极大地提升和加强了紫外光波的能量聚变,在更加高能高效地裂解废气和恶臭气味分子的同时,催化产生更多的活性氧和臭氧,对废气和恶臭气味进行更彻底地催化氧化分解反应,使其降解转化成低分子化合物、水分子和,从而达到脱臭及杀灭的目的。
(4)、高效除恶臭:能高效去除挥发性有机废气(VOCs)及各种恶臭气味,脱臭效率较高可达99%以上。
二、与传统的有机废气处理方法相比,壹哲UV光解废气除臭净化器有哪些突出的优点呢?
产品优势
1)、净化效率高,运行稳定。
2)、结构紧凑、设计新颖、体积小、重量轻、运输方便。
3)、噪声≤45dB(A),设备风阻≤100Pa。
4)、运行成本低、能耗低。
5)、紫外光氧化分解+碳化技术。
6)、安装及操作方便。
7)、清洗及维护方便,使用寿命长。
本产品利用特制的高能高臭氧UV紫外线光束照射废气,裂解废气,如:、、、氨、、、甲、、、、二化碳和,化物H2S、VOC类,、的分子键,使呈游离状态的污染物分子与臭氧氧化结合成小分子无害或低害的化合物,如CO2、H2O等。
利用高能高臭氧UV紫外线光束分解空气中的氧分子产生游离氧,即活性氧,因游离氧所携正负电子不平衡所以需与氧分子结合,进而产生臭氧。
UV+O2→O-+O*(活性氧)O+O2→O3(臭氧),众所周知臭氧对有机物具有极强的氧化作用,对恶臭气体、有机废气及其它性异味有立竿见影的清除效果。
废气利用排风设备输入到本净化设备后,净化设备运用高能UV紫外线光束及臭氧对废气进行协同分解氧化反应,使废气降解转化成低分子化合物、水和,再通过排风管道排出室外。
利用高能UV光束裂解废气中的分子键,破的核酸(DNA),再通过臭氧进行氧化反应,彻底达到脱臭及杀灭的目的。
三、产品性能综述
1.高效清除废气:
该设备能高效去除挥发性有机物(VOC)、类、无机物、、氨气、醇类等主要污染物,以及各种恶臭味,脱臭效率可达99%以上,脱臭效果超过国家2001年颁布的恶臭污染物排放标准(GB14554-93)。
2.无需添加任何物质:
只需要设置相应的排风管道和排风动力,使气体通过本设备进行分解净化,无需添加任何物质参与化学反应。
3.适应性强:
可适应高浓度,大气量,不同气体物质的净化处理,可每天连续工作,运行稳定可靠。
4.运行成本低:
本设备无任何机械动作,无噪音,无需专人管理和日常维护,只需作定期检查,本设备能耗低,设备风阻极低<50pa,可节约大量排风动力能耗。
5.无需预处理:
气体无需进行的预处理,如加温、加湿等,设备工作环境温度在摄氏-30℃-95℃之间,湿度在30%-98%、PH值在2-13之间均可正常工作。
6.设备占地面积小,自重轻:
适合于布置紧凑、场地狭小等条件,设备占地面积<10平方米/处理10000m3/h风量。
7.优质进口材料制造:
防火、防爆、防腐蚀性能高,设备性能安全稳定,采用不锈钢材质,设备使用寿命在十五年以上。
废气处理整套工艺:
有机废气处理中催化燃烧工艺流程有分建式与组合式两种。
在分建式流程中,预热器、换热器、反应器均作为独立设备分别设立,其间用相应的管路连接,一般应用于处量较大的场合。
组合式流程将预热、换热及反应等部分组合安装在同一设备中,即所谓催化燃烧炉,流程紧凑、占地小,一般用于处量较小的场合。
4. 进行催化燃烧的设备为催化燃烧炉,主要应包括预热与燃烧部分。在预热部分,除设置加热装置外,还应保持一定长度的预热区,以使气体温度分布均匀并在使用燃料燃烧加热进口废气时,保证火焰不与催化剂接触。为防止热量损失,对预热段应予以良好保温。在催化反应部分,为方便催化剂的装卸,常设计成筐状或抽屉状的 组装件。
使用范围:
处理技术特别适用余热回收率需求高,且无其它过程可利用作为热交换回收程序;适用于同一生产线上,因产品不同,废气成分经常发生变化或废气浓度波动较大的场合。应用行业包括石油、化工、橡胶、油漆、涂装、家俱、印制铁罐、印刷等行业中产生的中高浓度有机废气的净化处理,可处理的有机物质种类包括类、酮类、酯类、类、醛类、醇类、醚类和烃类等等。此外还适用于污水处理站的除臭。处理浓度在500-700/m3之间的有机废气和臭气。 催化氧化是典型的气-固相催化反应,其实质是活性氧参与的深度氧化作用。在催化氧化过程中,催化剂的作用是降低活化能,同时催化剂可使有机废气在较低的起燃温度条件下,发生无焰氧化,并氧化分解为CO2和H20,同时放出大量热能,从而达到去除废气中的有害物的方法。其反应过程为:在将废气进行化氧化的过程中,废气经管道由风机送入热交换器,将废气加热到催化氧化所需要的起燃温度,再通过催化剂床层使之氧化,由于催化剂的存在,催化氧化的起燃温度约为250-300℃,低于直接氧化法的氧化温度650-800℃,因此低能耗远比直接氧化法为低。
一、产品介绍
活性炭吸附处理有机废气一般采用活性炭吸附塔或吸附箱,对各类有机废气、恶臭类废气的吸附净化效率高,一次投资成本低,适用范围广。
在VOCs回收利用的工艺中,活性炭吸附设备作为吸附剂,可循环利用,当活性炭吸附设备吸附饱和后,用或其他惰性气体将被吸附的VOCs脱附,脱附后的混合气体用冷凝或气-液吸收技术进行处理。
在低浓度有机废气或恶臭类废气处理项目中,活性炭吸附能实现较好的处理效果。根据不同废气成分,可以将活性炭更换成耐磨性更好、循环性更高的沸石、分子筛、活性氧化铝等吸附材料。也可以升级为带有催化性能的吸附材料,在进气端增加臭氧,使被吸附的成分可以在吸附体内缓慢分解,提高吸附材料的使用寿命。
二、工作原理
废气经过吸附塔内的初效过滤器除去固体颗粒物后,进入塔体,经过活性炭层吸附后,除去气体中的有机废气分子,达到符合排放标准的净化气体,经风机排到室外。
一、产品介绍
UV光解除臭设备采用短波高能紫外线,对有机恶臭气体进行分解。设备性能温度、风阻小、净化效率高,是生活和工业领域广泛应用的除臭除味净化设备。
二、产品原理
UV光解除臭设备:采用波长低于280nm,一般采用185nm的UVC紫外光源进行废气处理。其主要原理是利用中短波紫外线光子所携带的能量较强。315nm~280nm的中波紫外,能量强度为3.94eV~4.43eV;280nm~100nm的短波紫外,能量强度为4.43eV~12.4eV,通过紫外线的光子轰击有机物的分子链,实现分子链的断裂,断裂的有机物成分与氧气、臭氧等反应,生成产物为CO?和H?O等无害物质
UV光催化氧化除臭设备:与UV光解设备类似的,还有一种光催化氧化技术。该设备采用光催化剂,利用催化剂在紫外光(一般是波长在365nm以下的光源)的照射下,产生电子空穴。电子空虚分解催化剂表面吸附的水产生羟基自由基,或使其周围的氧还原成活性离子氧,从而具备极强的氧化还原能力,将光催化剂表面的各种污染物分解。光催化氧化技术采用的光源波长较长、可散射的距离远,覆盖的有效净化区域空间大,但光催化剂易中毒而失效。
一、纳米材料在紫外光的照射下,把光能转变成化学能,促进有机物的合成或使有机物降解的过程就是光触媒技术。这一过程也叫做风催化,所以光触媒技术又叫做光催化技术。
二、光触媒废气净化器技术简介
在光触媒净化器内,高能紫外线光束与空气、TiO2反应产生的臭氧、?OH(羟基自由基)对恶臭有机气体进行协同分解氧化反应,同时大分子有机气体在紫外线作用下使其链结构断裂,使恶臭有机气体物质转化为无臭味的低分子化合物或者完全氧化,生成水和CO2,整个分解氧化过程在1秒内完成。
三、光触媒废气净化器技术特点
1、高效除恶臭:能高效去除挥发性有机物(VOC)、无机物、、氨气、醇类等主要污染物,以及各种恶臭味,脱臭效率可达95%以上,脱臭效果达到国家颁布的恶臭污染物排放一级标准(GB14554-93)。
2、无需添加任何物质:只需要设置相应的排风管道和排风动力,使待处体通过本设备进行氧化分解净化,无需添加任何物质参与化学反应
3、适应性强:可适应高浓度,大气量,不同恶臭气体物质的脱臭净化处理,可每天连续工作,运行稳定可靠。
4、运行成本低:本设备无任何机械动作,无噪音,无需专人管理和日常维护,只需作定期检查,本设备能耗低,设备风阻极低<700Pa,可节约大量排风动力能耗。废 气在风机的作用下进入配套的喷淋填料净化塔内,旋转上升气流与向下喷洒的喷淋液相互接触、碰撞,废气中的颗粒污染物被喷淋液捕获,并在重力的作用下沉至塔 底,循环液经双层不锈钢丝网隔渣过滤后循环使用;浮渣、沉渣干化后打包交公司处理,饱和循环液排至污水处理站处理或交公司进行处理;喷淋 净化塔内安装三层喷淋以及三层填料层,增加气液接触面积和接触时间,以提高净化效率;去除大部分颗粒物,废气经过滤除雾后进入光触媒废气净化器内,废气中 有机污染物被光触媒净化器产生的有极强氧化能力的活性氧、自由氧基及臭氧的协同作用下氧化分解成低分子化合物、和水,从而得以净化,净化后气体 高空排放
催化燃烧技术的产生及发展概况
我国古代以发酵的方法酿酒和制醋,成为人类利用生物催化剂或催化剂的开始。直到18世纪,才出现了有关非生物催化的应用与研究。1740年,英国Ward,J.用和硝石()一起燃烧制;1746年,Roebuck,J.用铅室代替玻璃容器,对Ward的方法进行了改进,这是工业上采用CO催化剂的开始;1806年,法国的Clement,N.和Des-ormes,C.B.阐明了在氧化氮作用下,SO2转化成SO3的机理;1816年,英国化学家Davy,H.发现铂能促进和醇蒸汽在空气中的氧化。
1836年,贝采尼乌斯(J.J.Berzelius)提出了"催化"和"催化剂"的概念,于是人们对催化现象的观察和系统研究也于19世纪开始了。1895年奥斯特瓦尔德(W.Ostwald)从理论上推断出了"在可逆反应中,催化剂仅能加速化学反应,而不能改变化学平衡"而获得了1909年度的诺贝尔化学奖。20世纪初,催化合成氨技术的工业化,使催化原理的研究出现了一个高峰,也可以说是催化化学中的里程碑。
1913年哈伯(F.Haber)等人利用磁铁矿,发明了双促进熔铁氨合成催化剂,利用原料气循环使用的流程,实现了合成氨的大规模工业生产。在此后的半个多世纪,多相催化工业技术经历了40年代末至50年代初的石油炼制技术的大发展(如催化裂化、加裂解、催化重整和异构化等);70年代至80年代,是石油化工的大发展阶段(如新型择形ZSM-5分子筛催化剂用于异构化、歧化和芳烃烷基化过程等);特别是进入90年代以后,出现了环境催化技术的大发展,例如催化消除氮氧化物(NOx)、氧化物(SOx)、可挥发性有机组分(VOCs)的催化氧化。
车排气催化净化性能的提高和车排气及黑烟微粒的催化消除,氯氟烃类(CFCs)的催化分解和催化合成代用品,CO2的催化合成利用、催化传感器、燃料电池以及臭氧在低层大气中的催化消除等。因而,我们可以看到,催化技术在解决当前国际上普遍关心的地球环境问题将发挥着重要的作用,并且催化研究也将从初的"以获取有用物质为目的的石油化工催化"的时期,而逐渐地转向了"以消除有害物质为目的的新的能源环保催化"时期。
邹平中博环保科技有限公司是一家设计制造环保涂装设备的企业,具有多年丰富的实践经验。公司主营环保涂装设备,废气处理设备,粉尘处理设备,环保催化燃烧废气处理安装 光氧催化废气安装,高温喷烤漆房定制,大型除尘设备,家具环保水幕 漆雾处理环保水帘柜,干式打磨台等 环保设备 电话: 曹经理