掘进机配件厂讲述掘进机的特点
掘进机配件厂阐述掘进机是矿山上用的一种重要的采煤设备,节省了人力物力。掘进机是一种能够实现截割、装载运输、自行走及喷雾除尘的联合机组。随着回采工作面综合采煤机械化的快速发展,煤矿对巷道掘进速度要求越来越高。为了提高采准巷道的速度,悬臂式掘进机被大力研制并逐步发展完善。
切割头应转动灵活,不得有裂纹或开焊。截齿座严重磨损,影响其强度或内孔变形过大,影响使用时应更换。在更换过程中不得损坏切割体的其它部位。可伸缩切割臂应伸缩灵活、可靠;伸缩距离应符合技术文件要求。更换截齿时应首先保证与原设计的几何位置相同,然后采用预热或保护焊等特殊工艺,保证焊接强度,且齿座应具有互换性。同轴度要求较严的箱体,涨套等应按对角线顺序逐级拧紧螺钉,重要联接螺栓,应按设计要求采用力矩扳手操作。
掘进机配件厂介绍掘进技术仍然会在钻爆破岩掘进、悬臂式掘进机、连续采煤机、掘锚联合机组以及全断面掘进机五个方向持续发展。在全硬岩巷道的掘进中,钻爆破岩掘进在很长一段时间内仍会是一种主要方式,但在一些重要领域,全断面掘进机会逐步取代钻爆破岩掘进;在硬度较低的全岩巷道和半煤岩巷道,悬臂式掘进机会得到大力发展,逐步成为主要的掘进方式;在一些条件时宜的煤巷掘进中,掘进效率较高的连续采煤及和掘锚联合机组将会得到推广应用。
基于数值模拟的多楔带轮成形工艺研究
带轮作为一种重要的传动零件, 广泛应用于汽车、农机、水泵以及机床等机械设备传动中。带轮传统加工方法是采用铸、锻毛坯经切削加工而成,特点是浪费材料、生产效率低,产品具有精度低、笨重、转动惯量大等缺点。随着科学技术的发展进步,锻压及旋压技术以其节能节材、生产效率高、产品性能好、合格率高等优点,逐步推广应用到带轮的实际生产中。
带有凸台的多楔带轮的成形采取锻压与旋压相结合的成形工艺,而关于影响复杂结构多楔带轮成形质量的工艺参数,并没有明确的研究结果可以参考,故零件生产多结合有限元模拟和试验分析得到较为合适的参数,并在此基础上进行下一步的优化。根据材料的拉伸系数计算拉伸道次,结合冲压与锻造技术并采用有限元模拟软件DEFORM-3D进行数值模拟,分析成形过程中的应力、应变分布,为锻压成形多楔带轮的实际生产提供参考。
零件结构分析
带有凸台的多楔带轮结构如图1、图2所示,在旋压成形多楔齿之前需经过锻压成形内筒及凸台,其中凸台的成形难度较大。多楔带轮材料为DD13钢,基本力学性能如下:屈服强度为325MPa,密度为7.851g/cm3,弹性模量为205GPa,泊松比为0.29。
pagenumber_ebook=32,pagenumber_book=39
图1 多楔带轮结构图
pagenumber_ebook=32,pagenumber_book=39
图2 多楔带轮三维示意图
锻压成形工艺分析
根据体积不变原理,利用Pro/Engineer对多楔带轮体积进行计算,同时考虑预留加工余量,确定选用厚度为3mm,直径为206mm的板坯进行制坯。根据零件结构特点制定其锻压成形工艺路线:多道次拉深成形内筒→冷锻内筒→成形凸台→成形外圆弧。
内筒的多道次拉深成形工艺参数可查询冲压手册,为尽可能降低板坯减薄程度,设计三道次拉深成形内筒。通过查阅带凸缘拉深系数表并且结合生产实际,设计次拉深系数m1=0.52。由拉深系数计算公式:
pagenumber_ebook=33,pagenumber_book=40
其中,m为拉深系数,d为筒壁直径(mm),D为毛坯直径(mm)。计算得拉深直径为d1=107mm。后两道次拉深系数通过查询冲压手册并结合实际取m2=0.75,m3=0.77。故拉深直径分别为d2=80mm,d3=61.3mm。凹模圆角半径的计算公式如公式2所示:
pagenumber_ebook=33,pagenumber_book=40
其中,t 为坯料厚度(mm),D 为毛坯直径(mm),d为次拉深后筒壁直径(mm)。计算出*1次拉深中凹模圆角半径r1为14mm。由此可确定出后续拉深的凹模圆角半径为:r2=10mm,r3=7mm。由于内筒的成形属于变薄拉深,在经过三道次的拉深成形之后需经过冷镦工步对内筒筒壁增厚,故**道次的拉深高度需大于零件内筒的图纸尺寸,结合实际生产经验**道次拉深高度为h=24mm。
有限元模型建立
利用Pro/Engineer建立工件和各道次模具的三维模型,基于Deform-3D软件对多道次成形过程进行模拟分析,模拟采用“SI”公制单位,实际生产中材料为DD13,模拟选择材料库中与之相近的AISI-1008,坯料设置为塑性体,模具为刚性体,网格数量划分为150000个,并运用局部网格细化技术对坯料中间部分进行网格细化分。根据生产实际将摩擦因数设置为0.12,冲压速度为10mm/s,温度为20℃。图3所示为道次模具结构。
模拟结果分析
pagenumber_ebook=33,pagenumber_book=40
图3 *1道次拉深成形模具图
pagenumber_ebook=33,pagenumber_book=40
图4 至*三道次等效应变分布图
道次至*三道次有限元模拟的等效应变分布如图4所示。由图4(a)可见应变值较大处出现在内筒上下圆角处,即内筒上下圆角处变形程度较大。由于*二道次和*三道次的拉深高度不再变化,只在筒径上发生变化,故内筒的上侧圆角处应力较为集中,如图4(b)和图4(c)所示。*三道次筒径缩小到61.3mm,已近似于零件内筒直径61mm,此时内筒圆角及筒壁处壁厚发生了减薄。有限元模拟过程中未出现刮料、折叠缺陷,成形质量较好。
*四道次冷镦成形内筒。由于**道次的拉深使内筒筒壁及圆角处有所减薄,所以冷镦内筒的目的是增厚内筒筒壁及内筒上侧圆角以保证后续零件的成形质量。冷镦工艺是一种精密塑性成形技术,具有制品的机械性能好、生产率高和材料利用率高,特别适合于大批量生产等优点。由图5等效应变分布图可知,坯料内筒上圆角处应变值较大,因上圆角处圆角半径较大,在上模下压时坯料上圆角处与下模发生刮蹭,故出现应力集中的现象。从成形结果上看内筒筒壁及上侧圆角处金属充填饱满,满足后续加工要求。锻压成形过程中载荷出现在该道次,*四道次载荷图如图6所示,载荷为184吨。
pagenumber_ebook=34,pagenumber_book=41
图5 *四道次等效应变分布图
pagenumber_ebook=34,pagenumber_book=41
图6 *四道次载荷图
*五道次冲压预成形凸台以及轮辐与内筒相接的圆角,*六道次通过局部加载凸台处的上模具将凸台锻造至零件要求壁厚。通过锻造工艺使凸台处近净成形,减少机加工量;同时使金属材料向四周圆角处流动充填,提高产品表面光洁度和产品精度;并且可以改变金属组织,提高金属性能。*五道次至*六道次等效应变分布图如图7所示。成形过程中没有出现刮料、折叠等缺陷,但是从图7(b)可见凸台圆角处未充填饱满,这是由于凸台高度较高,冲压过程中减薄较严重引起的。
pagenumber_ebook=34,pagenumber_book=41
图7 *五道次至*六道次等效应变分布图
工艺优化
为解决成形方案中凸台圆角处充填不饱满的问题,考虑在成形凸台之前增加一道次,在内筒与轮辐之间作圆弧过渡,使坯料在凸台处聚料,后两道次按照成形方案的模具进行模拟。增加在凸台处聚料的道次及成形凸台后一道次的应变分布图如图8、图9所示。从成形结果看,凸台圆角处充填饱满,并且没有缺陷产生,成形效果较好,故该成形方案可以有效地解决凸台处减薄严重的问题。对比各道次等效应变值可以发现,随着道次的增加,材料内累积的应变值越来越大。
pagenumber_ebook=35,pagenumber_book=42
图8 增加道次的等效应变图
pagenumber_ebook=35,pagenumber_book=42
图9 凸台成形等效应变图
后一道次冲压成形外圆弧,该道次是为后续旋压成形轮缘及多楔齿做准备,等效应变图如图10所示。可见内筒上圆角和凸台处的应变值较大。终成形结果图如图11所示,成形效果良好。经过测量各处壁厚均达到后续加工要求。
试验验证
根据模拟分析结果,利用YQK-200型液压机进行试验,得到了合格的样件,多楔带轮锻压试件如图12所示。可以看出凸台部分成形质量较好,试件表面光洁度较高,未出现刮料、叠料等现象,经测量试件各关键部位处壁厚均达到后续加工要求。通过试验验证了该锻压工艺的正确性,可为实际生产提供指导。
结论
pagenumber_ebook=35,pagenumber_book=42
图10 终成形等效应变分布图
pagenumber_ebook=35,pagenumber_book=42
图11 终模拟结果图
pagenumber_ebook=35,pagenumber_book=42
图12 多楔带轮锻压试件
通过对双凸台多楔带轮锻压工艺方案进行深入分析,将冲压工艺和锻造工艺相结合,采用有限元软件Deform-3D对其成形工艺进行了数值模拟,分析了其成形过程中的应力应变分布,并进行了工艺试验验证,结论如下。
⑴双凸台多楔带轮结构较复杂,为控制内筒的减薄程度,内筒需采用多道次拉深成形,结合材料的拉深系数计算拉深道次,并计算各道次拉深的工艺参数。成形过程中应变主要集中在内筒上下圆角处,有轻微的减薄,后续通过冷镦工艺对筒壁及圆角处进行了有效增厚。
⑵凸台的成形需结合冲压技术和锻造技术,控制金属流动方向和速度,保证其成形质量。并通过工艺优化解决了凸台处壁厚减薄严重的问题。
⑶结合有限元模拟结果,通过试验验证了工艺的可行性,得到了符合要求的锻压件。
圆柱齿轮加工的工艺创新
在现代机械中,齿轮传动是应用广泛的一种机械传动方式,它的功能是传递两轴间的运动和动力。尤其在汽车生产行业中,齿轮已属于大批量专业化生产,在长期的生产实践中,已经形成了一整套的生产工艺。
典型的齿轮加工工艺
用切削方法加工齿轮是一种典型的齿轮加工工艺。生产过程一般分为:齿轮毛坯加工→齿面加工→热处理工艺→齿面的精加工。具体工序为:锻件或棒料形成齿轮毛坯→粗加工,切除较多的余量→半精加工,车、滚齿、插齿等→热处理,调质、渗碳淬火、高频淬火→精加工,精修基准、精加工齿形等。
用此工艺加工的齿轮,可以达到较高的精度,一般可达到6级,经过珩磨后,可达5级以上,可以用在高速、低噪声的工作环境中。在长期的实践中发现,这类齿轮的齿体失效比例**齿面失效比例,主要为弯曲疲劳折断和过载折断。
齿轮的精密锻造工艺
随着数控精密加工技术的发展,精密锻造工艺和精密模具制造技术已被广泛应用到齿轮零件的大批量生产中。精密锻造工艺分为热精锻造和冷镦锻造。成熟的热精锻造工艺称为“一火两锻”,即齿轮在热锻成形和切边后,利用锻件余热进行精整,这样的热锻齿轮精度在8~9级左右。
冷镦锻造又称为闭塞锻造,是一种**的无飞边精密成形技术。当模具齿形精度达到6级时,在批量生产条件下,齿轮精度可以达到8~9级。这样的齿轮,可以达到卡车和轻型车的使用要求,可用在低速、重载、高噪声的工作环境中。在长期的使用过程中发现,这类齿轮的失效方式,齿面失效的比例**齿体失效的比例,主要为磨损和点蚀。
两种工艺生产的齿轮的性能分析
pagenumber_ebook=21,pagenumber_book=37
图1 典型工艺生产的齿轮
通过典型的齿轮加工工艺生产的齿轮如图1所示。由于在齿形加工过程中(滚齿、插齿、珩齿、磨齿等),零件的纤维组织被切断,虽然可以获得比较高的齿形精度和齿相精度、表面光洁度等,但齿轮的受力性能和抗折断性能受到影响,在过载情况下,存在齿根折断的隐患。
在精密锻造工艺条件下,生产的齿轮如图2所示。在精锻过程中,金属在高应力作用下,产生塑性变形,齿轮的组织致密,金属纤维连续,抗疲劳强度和耐磨性比切削加工的齿轮高出很多,适合于频繁冲击和重载工况下工作,但由于其精度低,表面粗糙,工作噪声大,工作速度低,易产生齿疲劳损伤。
pagenumber_ebook=22,pagenumber_book=38
图2 精密锻造齿轮
齿轮加工的工艺创新
随着数控加工技术的普及,数控滚齿机和二次自动对刀技术的成熟应用,我们可以将数控加工和精密锻造两种齿轮加工工艺**地结合起来,既可以得到良好的金属纤维组织,改善受力情况,又可以得到比较高的齿轮精度,减少金属切削量,提高生产效率。
在实际生产工艺中,用精密锻造的工艺方式生产齿轮毛坯,然后用数控滚齿机加二次对刀装置,进行精密滚齿加工。这种方式生产的齿轮,各项精度、性能指标都得到提高,经济**也有很大提升。与典型的齿轮加工工艺相比,因为切削量减少,所以加工效率提高。我公司有一客户,要生产一批新能源汽车用齿轮,模数3mm,24齿,6~7级精度。制作精锻齿轮毛坯,然后在高速数控花键铣床YKH750(图3)上运用二次对刀加工工艺(仅需6s左右)对精锻毛坯进行加工,在数控滚齿机床上滚切0.2mm的加工余量,只需1min左右。新工艺不但提高了生产效率,较重要的是提高了齿轮的性能,在用户的检测中,新工艺生产的齿轮的受力性能明显**传统方式生产的齿轮。
pagenumber_ebook=22,pagenumber_book=38
图3 高速数控花键铣床YKH750
总结
经过大量的实际生产证明和试验验证,将精锻工艺与典型的齿轮加工工艺组合起来,不仅可以提高产品性能,而且可以提高生产效率,是切实可行的,是齿轮加工的创新工艺。
凿岩机在凿岩时应合理施加轴推力。轴推力过小,机器产生回跳,振动增大,凿岩效率降低;过大则钎子**紧眼底,使机器在**负荷下运转,易过早磨损零件并使凿岩速度减慢。凿岩机卡钎时,机器处于**负荷下运转,如不迅速消除,较易损坏零件。卡钎时,应立即减小轴推力,通常凿岩机可逐步趋于正常。若仍然无效,应立即停机,先使用扳手慢慢转动钎杆,再开中气压使钎子徐徐转动。禁止用敲打钎杆的方法处理。
应经常观察排粉情况,排粉正常时,泥浆水顺孔口徐徐流出。若排粉不正常,要强力吹孔。若仍然无效,要先检查钎子的水孔和钎尾状态,再检查水针情况,更换损坏零件。凿岩机冲击频率很高,不能无油作业,要注意观察注油器的储油量和出油情况,调节好注油量。无油作业容易使运动零件过早磨损,当润滑油过多时,会造成工作面污染,影响操作者的健康。
凿岩机操作时注意凿岩机的声响,观察其运转情况,发现问题,立即停机处理。注意检查钎子的T作状态,钎头损坏或磨钝,钎尾变形或打裂,要及时更换。若钎头上的硬质合金片破裂或掉角,必须将碎片从孔中掏出,才能继续凿岩。操作向上式凿岩机时注意气腿的给气量,防止凿岩机上下摆动夹钎或折断钎杆。手握机器时,不要握得过紧,不能骑在气腿上凿岩,以防断钎伤人。气腿的支承点要可靠,以防气腿滑动而导致伤人损机。
河南亚兴精锻股份有限公司创建于2003年,公司位于国家文化名城—郑州市文化路航天商务大厦,生产厂区位于黄河之滨、中原福地的平原新区,占地37.5亩,规划生产车间面积12000平方米。亚兴公司是研发制造、生产销售各种型号矿用刮板运输机配件及各行业所需的精锻件的主要骨干企业和供货商。公司建有现代化生产基地,拥有高、中级技术人员20多名和模具制造、锻造、机加工、热处理、装配等标准化生产单元;拥有**业中的电动螺旋2500吨、1600吨、1000吨压力机和1250kw、750kw、500kw中频感应透热炉三条生产线,台式电阻炉热处理生产线三条,加工中心、数控机床10余台及光电线切割机、数控锯床、钻床、拉床、预处理喷丸机、产品检测仪等设备,年生产能力**万吨。主营产品:各类刮板、E型螺栓、哑铃销、驱动链轮、横梁、齿轮、链条等几十种矿用机械配件、上百种型号,同时还生产加工综合机械锻造配件等。全部产品严格按照国家和行业标准研发设计、生产制造,并荣获郑州市“重质量守信用良好单位”称号等,2004年通过国家矿用产品安全标志检验证书,2009年通过了ISO9001:2000**质量体系认证,2011年国家工商总局颁发了“YX亚兴”注册商标认证。