随着人类工业的发展,石化能源的利用不断给环境带来各方面的压力,世界各国加快了对清洁新能源的开发利用,太阳能因具有清洁无害、分布广泛等特点,越来越受到人们的青睐。太阳能光伏也成为当今分布式新能源发电的热点,工业大型光伏屋顶电站成为高效利用分布式能源发电的新形式。由于钢铁企业生产周期紧凑,通常是在电力检修期间停产检修,由于常规厂房停产时没有照明,给普通检修造成不便。工业屋顶光伏电站除清洁能源的优点外,还具备在昼间(不受停电影响)依旧可以为工业厂房提供照明、通风设施等电源的优越性。屋顶光伏电站具备绿色无污染、节能减排、缩短工业生产检修时间等优点。
一、屋面光伏荷载证明报告实例:
受检房屋位于江苏省连中小产业园内,拟在该产业园内A区9栋单层门式刚架轻型房屋钢结构厂房、B区7栋单层门式刚架轻型房屋钢结构厂房、C区2栋四层钢筋混凝土框架结构办公楼和D区8栋双层门式刚架轻型房屋钢结构厂房屋顶增设分布式光伏发电站,为明确房屋结构能否满足屋顶光伏电站建成后的安全运行及后期工厂正常生产使用要求,特委托对该产业园内上述26栋房屋进行检测并提出检测结论。
现场对26栋受检房屋的建筑、结构布置进行了调查,结果表明,所有房屋的主要承重构件的布置以及建筑布局等与设计图纸基本相符。现场用钢卷尺和手持式激光测距仪对房屋的轴线尺寸进行了抽样测量,检测结果如表6.1所示。由检测结果可以看出,房屋抽样检测位置处的轴线尺寸与原设计要求基本一致。
承载力验算
业主拟在该产业园内A区9栋单层门式刚架轻型房屋钢结构厂房、B区7栋单层门式刚架轻型房屋钢结构厂房、C区2栋四层钢筋混凝土框架结构厂房和D区8栋双层门式刚架轻型房屋钢结构厂房屋顶增设分布式光伏发电站,增加活载不大于0.35 kN/m2。
1 单层门式刚架轻型房屋钢结构厂房承载力验算
1.1 计算参数
本次采用建筑科学研究院结构计算程序PKPM(V2.2版)系列软件STS门式刚架模块对单榀门式刚架进行验算分析,STS工具箱模块对檩条、吊车梁等构件进行承载力验算。经现场检测,A区、B区单层门式刚架轻型房屋钢结构厂房屋面做法为:(1)0.5mm厚单层彩钢板;(2)50mm厚岩棉+铝箔+钢丝网;(3)镀锌冷弯薄壁C型钢檩条。
(1)验算荷载取值
恒载:0.3 kN/ m2
活载:0.5 kN/m2 + 0.35 kN/m2 = 0.85 kN/m2(验算檩条)
0.4 kN/m2 + 0.35 kN/ m2 = 0.75 kN/m2(验算刚架)
基本风压:0.55 kN/ m2,地面粗糙度为B类
基本雪压:0.4 kN/ m2
(2)地震信息
抗震设防类别为标准设防类(丙类),抗震设防烈度为7度(0.10g),设计地震分组为第三组,场地类别为IV类。
(3)材料强度
钢柱(含刚架柱和抗风柱)、主钢梁及相应的加劲肋、端板均采用Q345B级钢材,吊车梁及其余构件均采用Q235B级钢材。
1.2 门式刚架承载力验算
A01、A02、A09、B01、B02、B05为无吊车的单层门式刚架轻型房屋钢结构厂房,端区、中间区单榀门式刚架分别为GJ1、GJ2,计算模型见图11.1。A03~A08、B03、B04、B06、B07为有吊车的单层门式刚架轻型房屋钢结构厂房,端区、中间区单榀门式刚架分别为GJ3、GJ4。
验算结果表明,A03~A08、B03、B04、B06、B07厂房屋顶增设分布式光伏发电站后,钢柱GZ5、GZ6作用弯矩与考虑屈曲后强度抗弯承载力比值、平面内稳定应力比、平面外稳定应力比均小于1,满足承载力计算要求。抗风柱KFZ3、KFZ4作用弯矩与考虑屈曲后强度抗弯承载力比值、平面内稳定应力比均小于1,满足承载力计算要求;平面外稳定应力比大于1,不满足承载力计算要求。钢梁GL3作用弯矩与考虑屈曲后强度抗弯承载力比值、平面内稳定应力比、平面外稳定应力比均小于1,满足承载力计算要求。GZ7、GZ8作用弯矩与考虑屈曲后强度抗弯承载力比值、平面内稳定应力比、平面外稳定应力比均大于1,不满足承载力计算要求;钢梁GL4作用弯矩与考虑屈曲后强度抗弯承载力比值、平面内稳定应力比、平面外稳定应力比均大于1,不满足承载力计算要求。抗风柱KFZ3、KFZ4平面外稳定对应长细比均大于,不满足规范要求。除此以外,其余构件长细比均满足规范要求。
二、屋面光伏荷载证明报告——国内外技术水平发展现状
a)虽然我国光伏发电技术日益成熟,大面积应用正逐步走向成熟,但是多局限在地面,弊端是占地面积太大,而且多数建设地为内蒙古西部沙漠地区,发电后需要远距离架设杆塔送电至电网。
b)目前我国工业屋顶光伏电站处于探索阶段,目前没有大规模应用,工业厂房屋面由于建筑结构复杂,负荷情况复杂等情况,造成工业屋顶光伏电站目前处于探索阶段,没有实际安装工程。国内目前的屋顶光伏发电系统都停留在混凝土屋面上,由于混凝土屋面承重性强,大量光伏面板安装技术难度小。国内大型工业厂房几乎全部采用压型钢板屋面板,承重力差,目前技术应用上处于空白阶段。
c)现有工业厂房上级电源停电时无法同时完成检修工作,即使采用额外架设检修保安电源,由于保安电源投资成本高,维护成本高,经常在投产3~5后由于维护费用高,设备昂贵等原因,导致废弃,降低了企业生产安全性。屋顶光伏电站在昼间可为检修及保安电源提供一种补充。
三、屋面光伏荷载证明报告——荷载计算方法:
1、均摊载荷验算法
该方法的原理是:将设备的重量均摊到每一个设备的平均占地面积上,然后将该均摊的载荷与楼房的设计承重(单位面积)进行对比,如果均摊载荷小于设计承重,则楼房是安全的,反之则是不安全的。
例:一台设备重量Q=1000公斤,外形尺寸:长×宽×高=600mm×800mm×2200mm,设备四周均有走道,走道宽度均为800mm,楼房的设计承重是 P=600kg/m2。
Q = 1000 kg
A =(0.6+0.8/2+0.8/2)×(0.8+0.8/2+0.8/2)=2.24 m2
设备对地面产生的均摊荷载q=Q/A=1000/2.24=446 kg/m2
由于q <=P,设备可以安全安装。
对于我们的情况:LVG1200设备的重量:Q=6800kg,平均占地面积(将过道均摊):A=18m2,楼房设计承重:P = 1000kg/m2
设备对地面产生的均摊荷载q=Q/A=6800/18=377 kg/m2
由于q <=P,设备可以安全安装。
该方法不是很准确,因为它是将设备的重量均摊在总的占地面积上,它没有考虑把设备集中一点放置时情况,因此不是很科学,只能作为一个简单的估算。
2、等效均布载荷法
目前,在建筑上普遍采用的计算方法是等效均布载荷法。该方法的原理是:
在建筑设计时,设计师往往采用均布载荷作为设计的依据,并以此代表楼面上的不连续分布的实际载荷。但在实际使用时,楼板上的实际载荷并不是按照理想的均匀状态分布,而是由很多局部集中载荷构成。因此,在实际校核时,需要将这些局部的集中载荷折算成连续的等效均布载荷,而折算的原则是:折算后的等效均布载荷对楼板所产生的内应力,要等于实际的局部集中载荷对楼板所产生的内应力。如果折算后的等效均布载荷小于设计时所给定的均布载荷,则楼房是安全的。
坡屋顶的承重结构方式有砖墙承重、屋架承重、钢筋混凝土梁板承重三种。(1)砖墙承重 砖墙承重又叫硬山搁檩,是将房屋的内外横墙砌成尖顶状,在上面直接搁置檩条来支承屋面的荷载。适用于开间较小的房屋。(2)屋架承重,屋顶上搁置屋架,用来搁置檩条以支承屋面荷载。通常屋架搁置在房屋的纵向外墙或柱上,使房屋有一个较大的使用空间。屋架的形式较多,有三角形、梯形、矩形、多边形等。(3)钢筋混凝土梁板承重,钢筋混凝土承重结构层按施工方法有两种:一种是现浇钢筋混凝土梁和屋面板,另一种是预制钢筋混凝土屋面板直接搁置在山墙上或屋架上。太阳能是一种洁净能源,太阳能发电前景非常广阔。由于现有土地较为紧张,目前太阳能发电一般借助既有的建筑物实现发电与建筑物一体化。对新增光伏发电设备的建筑物,需核算增加设备荷载后既有建筑是否满足承载力要求;目前,规范对光伏发电设备的荷载计算没有专门的阐述,因此,设计时使用的标准各不相同。本文参考国外现有设计经验及现行相关规范,将计算结果进行对比后,提出较为常规的荷载计算方法及建筑物的承载力评估方法。研究结果表明光伏阵列中存在局部建筑物对周围区域的风载荷影响较为明显,该影响随着力建筑物越近越明显,特别是靠近局部建筑物近一圈的光伏组件影响为突出.数值模拟结果整体较物理风洞结果要大,应用上偏于安全,两者规律性较为一致.我公司国内一家甲级资质的建筑工程检测鉴定单位,拥有一批素质高、经验丰富的高中级工程技术人员和一系列先进配套技术装备。
一、屋面光伏荷载证明报告——屋顶光伏发电系统在我国的发展现状
(一)我国楼面光伏发电系统的技术发展现状
我国的光伏产业虽然在近些年呈现欣欣向荣的发展趋势,但从总体技术水平来看仍处于初期的发展培育阶段,相关技术远远称不上成熟。目前来看,我国的光伏发电技术有如下几个特征:
其一,能量转换率低。这是目前制约我国光伏发展的主要因素,也是要面对的首要问题。我国的光伏发电系统通常只有10%到15%的实际转换率,过低的转换率令光伏发电的成本居高不下,大大降低了技术实用性。直到2010年推出了转换率达到26%的聚光光伏发电技术,这种状况才有所好转,但提高能量转换率依然是光伏发电的首要技术目的。
其二,技术应用化程度不高。我国目前有相当一部分研究机构在进行光伏发电系统的研究,包括光伏企业、各个大学的实验室等,但这些机构中有相当一部分重理论,轻实践,获得的技术成果局限于实验室里,应用程度不高。还有部分研究人员的光伏技术研究与实践缺乏联系,偏离目前对光伏发电系统的实际需求,导致研究成果的社会能效不大。其三,环境能效相对成熟。我国目前常用的屋顶光伏发电系统理论寿命普遍超过十年,其能量回收周期则大致在三年左右。所以仅从环境能效上来看,我国的光伏发电系统还是有相当水准的,能够在环保节能方面发挥相当大的作用
二、屋面光伏荷载证明报告——钢结构屋面设计
1、钢结构屋面通常采用压型钢板为主,辅以采光带/天窗、通风器、风管等组成部分。目前市场上常用的钢结构屋面做法有两种:
(1)双层彩色压型钢板内夹保温棉,使用量很大,但是温差大、单坡长造成彩钢板热胀冷缩问题很难解决。(2)复合柔性钢屋面系统。由屋面彩钢板内板、隔气层、保温层、卷材防水层组成。由于外层铺设柔性卷材,整个屋面为一个密闭系统,也不存在热胀冷缩的问题,造价较国内钢构厂家稍高。钢结构屋面及节点漏水原因钢结构屋面漏水是通病,漏水主要集中在垂直搭接、水平搭接、屋脊两边搭接、采光瓦四周、风机四周、烟囱管道四周、屋面所有螺钉、水槽、女儿墙接缝处等接缝部位。主要原因有以下一些方面。
2.1钢结构屋面坡度一般较小,往往在6%以下,在中南雨水较多地区这种结构的屋面漏水现象较为普遍,有大面积漏水、采光窗及屋脊结合部位点滴等。究其原因,形成漏水现象的原因不外自攻螺丝、彩钢板搭接、屋脊瓦、抽心铆钉、屋面上人引起彩钢板变形及采光窗等装饰部位防雨胶脱落等几个方面原因。
2.2由于材料特性引发的漏水隐患:(1)金属板自身导热系数大,当外界温度发生较大变化时,由于环境温差变化大,因温度变化造成彩钢板收缩变形而在接口处产生较大位移,因而在金属板接口部位极易产生漏水隐患。(2)钢结构体系中,由于结构本身在温度变化、受风载、雪载等外力的作用下,容易发生弹性变形,在连接部位产生位移而产生漏水隐患。(3)特殊部位,由于使用不同材料连接,比如女儿墙与钢板连接处、屋面采光带等部位,由于应力变化不同步,产生漏水隐患。3钢结构屋面及节点防水措施出现屋面漏水主要是影响了建筑物的正常使用,侵蚀建筑物结构主体,而且还进一步缩短了建筑物的原有使用寿命。然而治理屋面上的渗漏是项综合的长期工作。
三、屋面光伏荷载证明报告——公司具备以下检测鉴定能力:
1.框架结构房屋安全检测
2.钢结构质量检测钢结构安全检测鉴定
3.出租屋提供房屋结构安全检测房屋质量检测报告
4.房屋加固检测 房屋加固设计 房屋加固方案
5.房屋漏水检测 厂房荷载安全检测
6.土木工程检测
7.道路安全检测
8.桥梁质量安全检测
9.学校幼儿园午托班学校结构安全检测鉴定房屋质量安全检测
10.工业区厂房质量安全检测
11.商铺开业前房屋安全检测鉴定
12.建设工程质量检测
13.游戏厅网吧特种行业需做整栋房屋质量安全检测房屋结构检测主体结构检测鉴定
14.取样检测鉴定
15.现场安全性勘察检测
16.承载力检测
17.房屋地基安全检测
18.危房评估检测 危房质量安全检测鉴定
19.建筑房屋加建加层安全检测等
20.出具房产证房屋结构安全检测鉴定报告。
本公司坚持“团结拼搏、锐意进取、严谨求实、艰苦奋斗的”的企业作风,不断开拓创新,依靠雄厚的实力、科学的管理和优质服务,坚持“诚信求实、服务社会、信誉、用户至上”的企业宗旨。根据现代企业管理模式进行动作。按省建设厅、市建委和甲方单位以及环保部门要求,文明施工、质量跟踪、终身负责,使公司一直保持零事故的硬性指标。近年来,公司出色的完成了千余项烟囱美化、新建、防腐、安装、拆除工程。在以上工程的施工中,均以合理的报价、先进的机械设备、出色的施工工艺、安全快捷的优质服务,赢得了社会各界和广大客户的高度赞誉。公司董事长携全体人员热忱期待与社会各界朋友真诚合作,用我们的智慧与热情提供更完美的服务,与您携手共创辉煌!
一、屋面光伏荷载证明报告实例:
某钢结构厂房建筑面积约m2。为单层轻钢结构厂房,局部两层。梁、柱截面均采用工字型截面形式,厂房有多台吊车运行。初始设计吊车大起重量为2T~16T。结构件车间建筑面积约7053m2,为单层轻钢结构厂房,局部两层。梁、柱截面均采用工字型截面形式,厂房有多台吊车运行。初始设计吊车大起重量为3T~7.5T。
2检测评定目的及范围
本次检测鉴定目的是依据现行有关标准、规范要求,对该厂房现状进行检测,结合现场检测数据及理论分析验算,评价结构的安全性,提出鉴定结论及建议,为甲方今后的维护和管理提供技术依据。
3主要技术依据
1)《工业建筑可靠性鉴定标准》GB50144-2008
2)《建筑结构荷载规范》GB 50009-2012
3)《钢结构设计规范》GB 50017-2003
4)《门式刚架轻型房屋钢结构技术规程》CE102:2002
5)《钢结构检测与鉴定技术规程》J10973-2007
6)《既有建筑物结构检测与评定标准》DG/TJ 08-804-2005
7)《钢结构检测评定及加固技术规程》YB9257-96
8)《工程测量规范》GB 50026-2007
9)《建筑变形测量规程》JGJ/T8-97
10)《建筑施工高处作业安全技术规范》JGJ 80-91
11)《钢结构施工质量验收规范》GB 50205-2001
12)委托方提供的相关技术资料:设计施工图与竣工图及终设计文件、施工纪录、改造与使用纪录。
4主要检测内容
1)现场调查结构承受的荷载和作用,对结构整体完整性、结构整体变形、结构锈蚀状况、关键承重构件及节点的变形与损伤、支座节点的工作与功能现状等进行现场检测,详细记录检测信息,特别是承重结构有损伤的部位、范围和程度。
(2)观察屋面维护结构现况,确定有无漏水现象,判断其工作环境。
二、屋面光伏荷载证明报告——光伏面板的结构可按下列方式分为两类:
(1)分离式光伏面板: 只具有发电功能,不作为围护结构的面板;建筑需要围护功能时须另设密封的采光顶或幕墙。这种面板要设单独的支架,支架连接在主体结构上。因此这种光伏建筑是一体化设计,两层皮。
(2)合一式光伏面板:既具有发电功能,同时又是采光顶或幕墙的面板。又称为建材式光伏面板。由于发电和建筑功能合一,因此建筑外皮只需一套面板,一套支承。这种光伏建筑是一体化设计,一层皮。合一式光伏结构系统与普通玻璃幕墙和采光顶大体相同,可以套用玻璃幕墙和采光顶的设计方法;分离式光伏结构系统在普通玻璃幕墙和采光顶的外侧另外附加了一个单独的结构,工作性质又不同于一般的幕墙和采光顶,必须进行专门的设计。
1.2光伏结构系统应进行结构设计,应具有规定的承载能力、刚度、稳定性和变形能力。结构设计使用年限不应小于25年。预埋件属于难以更换的部件,其结构设计使用年限宜按50年考虑。大跨度支承钢结构的结构设计使用年限应与主体结构相同。
1.3光伏结构系统的设计目标是:在正常使用状态下应具有良好的工作性能。抗震设计的光伏结构系统,在多遇地震作用下应能正常使用;在设防烈度地震作用下经修理后应仍可使用;在罕遇地震作用下支承骨架不应倒塌或坠落。
1.4非抗震设计的光伏结构系统,应计算重力荷载和风荷载的效应,必要时可计入温度作用的效应。抗震设计的光伏结构系统,应计算重力荷载、风荷载和地震作用的效应,必要时可计入温度作用的效应。
1.5光伏结构可按弹性方法分别计算施工阶段和正常使用阶段的作用效应,并进行作用效应的组合。
1.6光伏结构系统的构件和连接应按各效应组合中不利组合进行设计。
1.7光伏结构构件和连接的承载力设计值不应小于荷载和作用效应的设计值。按荷载与作用标准值计算的挠度值不宜超过挠度的允许值。
在太阳能系统中,太阳能辐射具有不可操作性,并且太阳能辐射随着季节和时间变化而变化,在控制理论中这种变化成为一项干扰。太阳能电站的动态参数(非线性和不确定性)十分适合先进控制理论。 控制系统可以分为两部分。部分是本地控制,通过设置好的日光反射装置,将时间和太阳辐射角度反馈给上层控制系统。第二部分逻辑层面是数字控制系统(D),通过接收到的数据控制进行计算,给出下一步指令。
现阶段的太阳能板追踪系统控制趋势是利用开环控制系统,根据太阳能辐射的地点和时间,给出太阳辐射方向。当接收器接到温度和流量分布的模拟后,计算机根据输入算法中的模拟公式给出每块板支架的偏移量。控制参数的准确性会因时间、经度和纬度、支架位置、处理器度和环境干扰等因素而产生误差。
很多太阳辐射位置算法的研究均利用了小型计算机。很多算法利用微型计算机增加了追踪度。但研究表明此种算法只在有效时间段内有效[7]。大型计算机在长期数据监测下可以准确预测太阳辐射位置并将误差缩小至0.003度,但经济成本太高。
三、屋面光伏荷载证明报告——屋顶光伏发电系统使用寿命的优化设计
我国的光伏发电系统组件基本都具有较长的理论使用寿命,通常的使用寿命在20年左右,长的可以达到30年,短的也超过了十年。但是在实际的应用中,往往达不到理论使用寿命,大部分光伏组件在七八年的时间内就会损坏而无法使用,有些光伏组件的实际使用寿命甚至不超过五年。太阳能瓦片的使用寿命问题更为严峻,根据实际经验,有些地区的太阳能瓦片仅能使用两三年左右。这些使用寿命问题与光伏组件在设计上脱离实际有很大关系,在设计阶段只考虑到了物理冲击与发电能效,忽略了风蚀、酸雨、温差变化等一系列实际因素对组件的侵蚀。因此想要优化太阳能瓦片等光伏组件的寿命,必须结合实际的使用条件。举例来说,在酸雨频发地区,在设计光伏组件时要特别强化其耐酸碱能力;在风沙较大的地区,要提升光伏组件的抗风蚀、抗冲击能力;在雨水较多的地区,要额外强化屋顶光伏发电系统的防水设计。电站采取在轻钢屋面厂房、仓库屋顶采取沿屋面坡度3度倾角方式安装太阳能板。根据企业中每座厂房、仓库屋顶光伏组件的容量和厂房内负荷大小合理划分几个区域,然后配备容量适当的逆变器,组成几个的发电单元,多点并网。采用统一招标规定的230Wp多晶光伏组件,并合理选择设备配置,为下一步在上海乃至全国大面积推广和发展建设做好经验积累。自2012年投产来,光伏电站已成功运营了三年的时间。
1 光伏电站运行数据分析
电站自2013年投产运行以来,光能产出数据见表1。
光伏电站装机容量为32MWp, 共170台光伏发电机组,至2013年5月全部投产,由于设备维修等其他因素并未实现满负荷发电。根据每月统计的产出数据统计出三年来发电量对比如图2和图3。
2013年因施工原因,投产机组逐渐增多。发电量在6月全部投产后呈指数上升趋势,对比可见每年7-9月是发电量高峰期,而11月至1月则发电量较低。2014年和2015年发电量变化曲线变化基本一致,图线变化与上海市气象局统计的上海市平均光照曲线变化趋势基本一致。因此光伏机组对太阳能的利用率与太阳辐射变化较为一致。
根据图3中三年平均每台产出数据,可看出其中2013年9月平均产出量多,每台机组的平均产出变化较大,机组工作状态不稳定。通过对比发现,只有2013年9月的产出比例超出设计值,其他月份均与设计值相差较大。其中年度总发电量,2013年为设计值的46.3%,2014年为63.2%, 2015年为70%。均未达到设计值参考产能的75%及以上。
2 未达设计值影响因素
太阳能电站产除了受环境因素影响,还与自身构造、电池板材料有关。下面根据研究,可能会产生主要影响的要素分析如下:
2.1 环境因素对太阳能电池板能效的影响
温度和太阳能辐射照度是影响太阳能设备输出效率的两个主要因素。其他环境因素,如风、雨、云层和太能辐射分布会通过对温度和太阳能辐射度的间接影响从而影响设备效率[3]。
2.1.1 温度
当光伏组件在环境温度为25℃时工作时,其实际操作温度将高于环境温度,并导致14%的能源转化损失[4]。一般来说,单晶硅额定电池工作温度(NOCT)为40℃。NOCT是指当太阳能组件或电池处于开路状态,并在以下具有代表性情况时所达到的温度[5]。
(1)电池表面光强: 800 W/m2
(2) 环境温度: 20℃
(3)风速:1m/s
(4)电负荷: 无(开路)
(5)倾角:与水平面成45°
(6) 支架结构:后背面打开
通过对光伏组件电能生产监控实验发现[2],高温会导致组件产能下降。高风速会使环境温度下降,从而降低了光伏组件工作温度,提高产能。低温是光伏组件的理想工作环境。当环境温度高于25℃时,电能损失为标准测试条件(STC)功率的10%,光谱、组件衰减和其他因素会导致约7.7%的电能损失。
深圳市住建工程检测有限公司是一家集设计、施工、检测于一体的专业建筑工程检测、鉴定、的单位,与同行业均有密切的技术合作与技术支持。专业从事房屋安全检测、房屋裂缝检测、房屋灾后检测、危房评估安全检测、厂房承重检测、厂房验收检测、厂房加固设计施工、钢结构安全检测鉴定、学校幼儿园房屋安全检测、牌安全检测、酒店宾馆检测等类型的检测。本公司资质证书齐全,出具权威鉴定报告。各类安全检测服务多少钱,一般按平米收费,收费标准是同行业低价格,快速出具报告。