保焊指二氧化碳或氩气保护的焊接方法,不用焊条用焊丝。CO2焊效率高,氩气保护焊主要焊铝、钛、不锈钢等材料。埋弧焊是用焊丝焊接,焊剂保护。焊剂像沙子把电弧埋住。主要用于焊接厚板。气保焊危害是电弧和灰尘对焊工的健康影响很大。
由焊接火花引发的燃烧爆炸事故。
· 由焊接火焰或烛件引起的烧伤、烫伤事故。
· 焊接过程中发生的触电事故及高空坠落事故。
· 焊工在作业中会引起血液、眼、皮肤、肺部等发生病变。
· 焊接中焊工常受到的辐射危害有强光、红外线、紫外线等。焊接中的电子束产生的X射线,会影响焊工的身体健康。
· 焊接过程中,由于高温使金属的焊接部位、焊条、污垢、油漆等蒸发或燃烧,形成烟雾状蒸气粉尘,引起中毒。
· 焊接中产生的高频电磁场会使人头晕疲乏。
焊接作业的危害,并非不可避免 。只要每位焊工在作业中都严格遵守焊割作业安全规程,这些危害都可以得预防。
氩弧焊危害
氩弧焊主要应用于铝及铝合金、铜及铜合金、镁及镁合金、钛及钛合金、高温合金等焊接,在许多重要的工业部门都有广泛的应用。氩弧焊除了与焊条电弧焊相同的触电、烧伤、火灾以外,还有高频电磁场、点击放射性和比焊打电弧焊强得多的弧光伤害 。
二氧化碳保护焊危害
CO2气保焊接区域的污染按形成方式不同,分为化学污染和物理污染两大类。
化学污染
化学污染是指CO2气保焊接过程中产生的有害气体和烟尘。进行CO2气保焊接时,在焊接区域,电弧周围会产生一些有害物质。
CO2气保焊接产生的有害物质可分为两类,一类是有害气体,主要是二氧化碳(CO2)、一氧化碳(CO)、二氧化氮(NO2)和臭氧(O3)。一类是烟尘,其主要成分是三氧化二铁(Fe2O3)、二氧化硅(SiO2)和氧化锰(MnO)等。这些有害物质,除了二氧化碳是为了保护电弧和熔池,从焊枪中喷出的,焊接没有用完而残存在焊接区域周围,其余的有害物质都是从焊接电弧和焊接熔池中产生出来的。
物理污染
物理污染主要包括:CO2气保焊高温电弧光产生的紫外线、红外线等。
滤筒式移动焊烟净化器,将万向吸气臂对准焊烟产生的点。通过系统产生的负压,将焊烟中产生的粉尘和有毒有害气体吸入净化器中,进行收集。滤筒式移动焊烟净化器有着广泛的应用。它方便灵活,便于移动。能满足各种灵活的工况。
高负压焊烟除尘器,主要将50mm口径的软管与焊机头直接连接。焊机工作时除尘器工作,焊机停止时除尘器也停止。这样保证在使用最小风量的同时,有效的处理焊烟。另外高负压焊烟除尘器可以连接最长20m的软管,可以有效的和自动焊机头等连接。克服了移动式吸气臂需要手工移动位置的不足。正在的做到了自动化,并且收集净化效果显着。
氩气国标编号 22011 ,CAS号 7440-37-1, 分子式 Ar,分子量 39.95,无色无臭的惰性气体;蒸汽压 202.64kPa(-179℃);熔点 -189.2℃;沸点-185.7℃ 溶解性:微溶于水;密度:相对密度(水=1)1.40(-186℃);相对密度(空气=1)1.38;稳定性:稳定;危险标记 5(不燃气体);主要用途:用于灯泡充气和对不锈钢、镁、铝等的电弧焊接,即"氩弧焊"。
等离子弧焊,是指利用等离子弧高能量密度束流作为焊接热源的熔焊方法。等离子弧焊接具有能量集中、生产率高、焊接速度快、应力变形小、电孤稳定且适宜焊接薄板和箱材等特点,特别适合于各种难熔、易氧化及热敏感性强的金属材料(如钨、钼、铜、镍、钛等) 的焊接。
气体由电弧加热产生离解,在高速通过水冷喷嘴时受到压缩,增大能量密度和离解度,形成等离子弧。它的稳定性、发热量和温度都高于一般电弧,因而具有较大的熔透力和焊接速度。形成等离子弧的气体和它周围的保护气体一般用纯氩。根据各种工件的材料性质,也有使用氦、氮、氩或其中两者混合的混合气体的。
用途:一种稀有气体。用作电弧焊接(切割)不锈钢、镁、铝、和其它合金的保护气体。还用于钢铁、铝、钛和锆的冶炼中。放电时氩发出紫色辉光,又用于照明技术和填充日光灯、光电管、照明管等。[3]
在酿酒的过程中,啤酒桶里的填充物,它可以把氧气置换,以避免啤酒桶里的原料被氧化成乙酸。
热处理工艺也用于代替氮气和氨气,效果更是超过氮气和氨气,不锈钢热处理时采用氩气保护折弯效果更好不易断裂
等离子弧切割是一种常用的金属和非金属材料切割工艺方法。它利用高速、高温和高能的等离子气流来加热和熔化被切割材料,并借助内部的或者外部的高速气流或水流将熔化材料排开直至等离子气流束穿透背面而形成割口。
等离子弧焊接和切割:
等离子弧的产生:
(1)等离子弧的概念:
自由电弧:未受到外界约束的电弧,如一般电弧焊产生的电弧。
等离子弧:受外部拘束条件的影响使孤柱受到压缩的电弧。
自由电弧弧区内的气体尚未完全电离,能量未高度集中,而等离子弧弧区内的气体完全电离,能量高度集中,能量密度很大,可达10~10W/cm2,电弧温度可高达24000~50000K(一般自由状态的钨极氩弧焊最高温度为10000~20000K,能量密度在10W/cm2以下)能迅速熔化金属材料,可用来焊接和切割。
(2)等离子弧的产生
等离子弧发生装置如图6-4-1所示。
在钨极与喷嘴之间或钨极与工件之间加一较高电压,经高频振荡使气体电离形成自由电弧,该电弧受下列三个压缩作用形成等离子弧。
①机械压缩效应(作用)--电弧经过有一定孔径的水冷喷嘴通道,使电弧截面受到拘束,不能自由扩展。
②热压缩效应--当通入一定压力和流量的氩气或氮气时,冷气流均匀地包围着电弧,使电弧外围受到强烈冷却,迫使带电粒子流(离子和电子)往弧柱中心集中,弧柱被进一步压缩。
③电磁收缩效应--定向运动的电子、离子流就是相互平行的载流导体,在弧柱电流本身产生的磁场作用下,产生的电磁力使孤柱进一步收缩。
电弧经过以上三种压缩效应后,能量高度集中在直径很小的弧柱中,弧柱中的气体被充分电离成等离子体,故称为等离子弧。
当小直径喷嘴,大的气体流量和增大电流时,等离子焰自喷嘴喷出的速度很高,具有很大的冲击力,这种等离子弧称为"刚性弧",主要用于切割金属。反之,若将等离子弧调节成温度较低、冲击力较小时,该等离子弧称为"柔性弧",主要用于焊接。
等离子弧焊接
用等离子弧作为热源进行焊接的方法称为等离子孤焊接。
焊接时离子气(形成离子弧)和保护气(保护熔池和焊缝不受空气的有害作用)均为纯氩。
等离子弧焊所用电极一般为钨极(与钨极氩弧焊相同,国内主要采用钍钨极和铈钨极,国外还采用锆钨极和锆极),有时还需填充金属(焊丝)。一般均采用直流正接法(钨棒接负极)。故等离子弧焊接实质上是一种具有压缩效应的钨极气体保护焊。
芬兰赫尔辛基大学的科学家在24日出版的英国《自然》杂志上报告说,他们首次合成了惰性气体元素氩的稳定化合物--氟氩化氢,分子式为HArF。这样,6种惰性气体元素氦、氖、氩、氪、氙和氡中,就只有原子量最小的氦和氖尚未被合成稳定化合物了。惰性气体可广泛应用于工业、医疗、光学应用等领域,
HArF模型合成惰性气体稳定化合物有助于科学家进一步研究惰性气体的化学性质及其应用技术。
在惰性气体元素的原子中,电子在各个电子层中的排列,刚好达到稳定数目。因此原子不容易失去或得到电子,也就很难与其它物质发生化学反应,因此这些元素被称为"惰性气体元素"。
在原子量较大、电子数较多的惰性气体原子中,最外层的电子离原子核较远,所受的束缚相对较弱。如果遇到吸引电子强的其他原子,这些最外层电子就会失去,从而发生化学反应。1962年,加拿大化学家首次合成了氙和氟的化合物。此后,氡和氪各自的化合物也出现了。
原子越小,电子所受约束越强,元素的"惰性"也越强,因此合成氦、氖和氩的化合物更加困难。赫尔辛基大学的科学家使用一种新技术,使氩与氟化氢在特定条件下发生反应,形成了氟氩化氢。它在低温下是一种固态稳定物质,遇热又会分解成氩和氟化氢。科学家认为,使用这种新技术,也可望分别制取出氦和氖的稳定化合物。
在加拿大工作的英国年轻化学家巴特列特(N.Bartlett)一直从事无机氟化学的研究。自1960年以来,文献上报道了数种新的铂族金属氟化物,它们都是强氧化剂,其中高价铂的氟化物六氟化铂(PtF6)的氧化性甚至比氟还要强。巴特列特首先用PtF6与等摩尔氧气在室温条件下混合反应,得到了一种深红色固体,经X射线衍射分析和其他实验确认此化合物的化学式为O2PtF6,其反应方程式为:
等离子弧有两种工作方式。一种是"非转移弧",
电弧在钨极与喷嘴之间燃烧,主要用於等离子喷镀或加热非导电材料。
另一种是"转移弧",电弧由辅助电极高频引弧后,电弧燃烧在钨极与工件之间,用於焊接。形成焊缝的方式有熔透式和穿孔式两种。前一种形式的等离子弧只熔透母材,形成焊接熔池,多用于0.8~3mm厚的板材焊接;后一种形式的等离子弧只熔穿板材,形成钥匙孔形的熔池,多用于3~12mm厚的板材焊接。此外,还有小电流的微束等离子弧焊,特别适合於0.02~1.5毫米的薄板焊接。
等离子弧焊接属于高质量焊接方法。焊缝的深/宽比大,热影响区窄,工件变形小,可焊材料种类多。特别是脉冲电流等离子弧焊和熔化极等离子弧焊的发展,更扩大了等离子弧焊的使用范围。
等离子弧焊与TIG焊十分相似,它们的电弧都是在尖头的钨电极和工件之间形成的。但是,通过在焊炬中安置电极,能将等离子弧从保护气体的气囊中分离出来,随后推动等离子通过孔型良好的铜喷管将电弧压缩。通过改变孔的直径和等离子气流速度,可以实现三种操作方式:
1、微束等离子弧焊:30A以下的熔透型等离子弧焊
是指电流在30A以下的熔透型等离子弧焊,通常称为微束等离子弧焊。为了保证小电流等离子弧的稳定,一般采用混合型等离子弧。主要用于超薄件的焊接。
2、熔透型等离子弧焊:15~200A
它是采用较小的焊接电流和较小的离子气流量,等离子弧在焊接过程中只熔化焊件不产生小孔效应,焊接方法与钨极氩弧焊很相似,焊接时可以不添加金属,主要用于薄板(0.5~2.5mm)的焊接。
3、穿透型等离子弧焊:100~300A
又称穿孔型焊接法,通过增加焊接电流和等离子气流速度,可产生强有力的等离子束,利用它温度高、能量密度强、穿透力强的特点,焊接时等离子弧把焊件完全熔透并在等离子流量的作用下形成一个穿透焊件的小孔(小孔背面露出等离子弧),形成正反面都有鱼鳞纹的焊缝,即所谓的"小孔效应",焊接时一般不加填充金属。适用于3~8mm的不锈钢、12mm以下的钛合金、2~6mm低碳钢低合金钢以及铜、黄铜和镍及镍合金的焊接。
电源
使用等离子弧焊时,通常采用直流电流和垂降特性电源。由于从特别的焊炬排列方式和各自分离的等离子、保护气流中获得了独特的操作特性,可在等离子控制台上增加一个普通的TIG电源,还可以使用特别组建的等离子系统。采用正弦波交流电时,不容易使等离子弧稳定。当电极和工件间距较长且等离子被压缩时,等离子弧很难发挥作用,而且,在正半周期内,过热的电极会使导电嘴变成球形,从而干扰弧的稳定。
可使用专用的直流开关电源。通过调节波形的平衡来减少电极正极的持续时间,使电极得到充分冷却,以维护尖头导电嘴形状,并形成稳定的弧。
起弧
虽然等离子弧是通过采用高频产生的,但它首先是在电极和等离子喷嘴之间形成的。该维弧被装在焊炬中,需要焊接时,再将它转移到工件上。与在焊缝间保持的维弧相同,维弧系统能确保稳定的起弧,这避免了对产生电子干涉的高频的需要。
电极
用于等离子过程使用的是含2%氧化钍的钨电极和铜的等离子喷嘴。与TIG焊使用的导电嘴不同,在等离子过程中,对电极导电嘴的直径要求不那么严格,但压缩角须保持在30°~60°左右。等离子喷嘴孔的直径是很重要的,在相同的电流强度和等离子气流速度下,孔直径太小会导致喷嘴被过度腐蚀甚至熔化。在工作电流下,需要谨慎使用直径过大的等离子喷嘴。
注:孔的直径过大,可能会对弧的稳定及孔的维护造成困难。
气体
通常等离子气体的组合气体是纯氩,并含有2%~5%的氩气作为保护气体。氦气也能用做等离子气体,但由于它温度较高,会降低喷嘴的电流上升率。氢气含量越少,进行小孔型等离子焊接就越困难。
根据各工业部门生产工艺流程中对不同介质测量要求,根据国家标准设计制作专用材质的压力仪表,具体包含氧气压力表、乙炔压力表、丙烷压力表、二氧化碳压力表、氮气压力表、氩气压力表、氢气压力表等。
要氩气的主要技术指标及技术关键包括检出限、灵敏度、分析精度、测量的稳定性、校准方法等。
的主要技术指标及技术关键包括检出限、灵敏度、分析精度、测量的稳定性、校准方法等。
光谱仪使用的氩气纯度要求≥99.996%,其纯度不够的氩气将导致以下后果:
1.校正系数超出要求范围,标准化系数偏高。
2.激发光源不激发及跳闸。
3.激发时扩散放电,激发点呈白色(白点),强度降低,样品表面无侵蚀,分析数据不准确。
4.分析数据不稳定,特别是分析波长较低的元素如:C、P、S等,还有一些高合金铸件、铸铝、铸铁、纯金属等。
如果出现了以上问题,再好的光谱仪也是分析不出一个准确的数据。所以,想要光谱仪分析出一个准确的数据,前提就是要给光谱仪提供良好的气源,即含量≥99.996%的氩气。而通过氩气净化机输出的氩气含量≥99.9999%.远高于光谱的供氩要求。
经济核算:以氩气净化机在光谱仪器中的应用举例说,光谱仪使用过程中最大的消耗品就是氩气,使用氩气净化机可以把价格昂贵(市场平均价240元/瓶)的高纯氩或液态氩换成价格低廉(市场价平均价40元/瓶)的普通纯氩就可以达到光谱要求的氩气纯度99.996%。以每天使用光谱仪8小时(3天换1瓶),1年开机350天,如光谱仪使用10年计算,节省的氩气
氩气流量是随着电流和焊接速度的变化而改变的。气体流量大时,会产生紊流:气体流量小,气体刚性差,都会使气体保护效果变差。氩气流量计是是目前比较理想的氩气计量仪表。采用卡门涡街原理制造,具有测量精度高、量程宽、功耗低、安装方便、操作简单、压力损失小等优点。
当无空气流动时,电桥处于平衡状态,控制电路输出某一加热电流至热线电阻RH;当有空气流动时,由于RH的热量被空气吸收而变冷,其电阻值发生变化,电桥失去平衡,如果保持热线电阻与吸入空气的温差不变并为一定值,就必须增加流过热线电阻的电流IH。因此,热线电流IH就是空气质量流量的函数。
发热元件采用1Cr18Ni9Ti不锈钢无缝管作保护套管,0Cr27Al7MO2高温电阻合金丝、结晶氧化镁粉,经压缩工艺成型,使电加热元件的使用寿命得以保证。控制部分采用高精度数显式温控仪、固态继电器等组成可调测温、恒温系统,保证了电加热器的正常运行.
氩气熔化极惰性气体保护焊又称MIG(Metal Inertia Gas )焊,它是利用氩气或富氩气体作为保护介质,采用连续送进可熔化的焊丝与燃烧于焊丝焊丝工件间的电弧作为热源的电弧焊。这种方法焊接质量稳定可靠,最适于焊接铝、铜、钛及其合金等有色金属中厚板,也适用于焊接不锈钢、耐热钢和低合金钢等。由于焊丝的载流能力大,焊接生产率高。熔化极氩弧焊的电弧是明弧,焊接过程参数稳定,易于检测及控制。
MIG属于熔化极气体保护焊,与CO2气体保护焊相比,具有以下的优点:MIG焊是以惰性气体保护或以富氩气体保护的弧焊方法。而CO2保护焊却具有强烈的氧化性。这就决定了二者的区别和特点。MIG焊的主要优点如下:
1.在氩或富氩气体保护下的焊接电弧稳定。
2.由于MIG焊熔滴过渡均匀和稳定,所以焊缝成形均匀、美观。
3.电弧气氛的氧化性很弱,甚至无氧化性,MIG焊不但可以焊接碳钢、高合金钢,而且还可以焊接许多活泼金属及其合金,如:铝及铝合金、镁及镁合金等。
4.大大地提高了焊接工艺性和焊接效率。但是:
①熔化极气体保护焊比手工电弧焊的焊接设备更复杂、价格高,并且使用时不轻便、灵活。
②熔化极气体保护焊焊枪较大,焊接缆线比较僵硬、不灵活,因此不适合焊接密封舱体结构。
③熔化极气体保护焊焊枪的尺寸较大,并且焊丝伸出长度为12~25mm,不易观察焊接电弧和得到高质量的焊缝。
④采用熔化极气体保护焊进行室外焊接时,常常受到天气或防护措施的限制。为了避免焊接时保护气体发生爆炸,应对保护气体气瓶采取防护措施。当室外风速超过2.2 m/s时,不易采用熔化极气体保护焊进行焊接。
电源极性
通常MIG焊应采用直流电源。因为交流电源将破坏电弧稳定性,在电流过零时,电弧难以再引燃。直流焊接时,电流极性有两种接法,直流正接(反极性)法和直流反接(正极性)法。直流正接法是指电极为阴极和工件为阳极;直流反接法则恰好相反。MIG焊多采用直流反接。主要原因如下:
1.电弧稳定。因阳极斑点牢固地出现在焊丝端头,使得电弧不发生飘移。相反,采用直流正极性接法时,焊丝为阴极,因阴极斑点总是寻找氧化膜,所以阴极斑点不断地沿焊丝上、下飘移,移动最大可以达到20~30mm,从而破坏了电弧的稳定性。
2.在焊缝附近产生阴极破碎作用。因工件为阴极,所以在焊缝附近的金属氧化膜能被阴极破碎作用而去除。这正适合于焊接铝、镁及其合金。
3.直流反接时,焊丝熔化速度加快,生产效率高。
注:国内的直流正接对应国际上直流反极性接法。
氩气的用途:氩是目前工业上应用很广的稀有气体。它的性质十分不活泼,既不能燃烧,也不助燃。在飞机制造、造船、原子能工业和机械工业部门,对特殊金属,例如铝、镁、铜及其合金和不锈钢在焊接时,往往用氩作为焊接保护气,防止焊接件被空气氧化或氮化。 在金属冶炼方面,氧、氩吹炼是生产优质钢的重要措施,每炼1t钢的氩气消耗量为1~3m3。此外,对钛、锆、锗等特殊金属的冶炼,以及电子工业中也需要用氩作保护气。
惰性气体处理:向钢液中吹入惰性气体,这种气体本身不参与冶金反应,但从钢水中上升的每个小气泡都相当于一个“小真空室”(气泡中H2、N2、CO的分压接近于零),具有 “气洗”作用。炉外精炼法生产不锈钢的原理,就是应用不同的CO分压下碳铬和温度之间的平衡关系。用惰性气体加氧进行精炼脱碳,可以降低碳氧反应中CO分压,在较低温度的条件下,碳含
降低而铬不被氧化。
氩弧焊在焊接时充氩气, 使用氩气作为保护气体的一种焊接技术。就是在电弧焊的周围通上氩气保护气体,将空气隔离在焊区之外,防止焊区的氧化。因此可以焊接不锈钢、铁类五金金属。
氩气是一种比较理想的保护气体,比空气密度大25%,在平焊时有利于对焊接电弧进行保护,降低了保护气体的消耗。氩气是一种化学性质非常不活泼的气体,即使在高温下也不和金属发生化学反应,从而没有了合金元素氧化烧损及由此带来的一系列问题。氩气也不溶于液态的金属,因而不会引起气孔。氩是一种单原子气体,以原子状态存在,在高温下没有分子分解或原子吸热的现象。氩气的比热容和热传导能力小,即本身吸收量小,向外传热也少,电弧中的热量不易散失,使焊接电弧燃烧稳定,热量集中,有利于焊接的进行。
芬兰赫尔辛基大学的科学家在24日出版的英国《自然》杂志上报告说,他们首次合成了惰性气体元素氩的稳定化合物--氟氩化氢,分子式为HArF。这样,6种惰性气体元素氦、氖、氩、氪、氙和氡中,就只有原子量最小的氦和氖尚未被合成稳定化合物了。惰性气体可广泛应用于工业、医疗、光学应用等领域,
HArF模型
HArF模型
合成惰性气体稳定化合物有助于科学家进一步研究惰性气体的化学性质及其应用技术。
在惰性气体元素的原子中,电子在各个电子层中的排列,刚好达到稳定数目。因此原子不容易失去或得到电子,也就很难与其它物质发生化学反应,因此这些元素被称为"惰性气体元素"。
在原子量较大、电子数较多的惰性气体原子中,最外层的电子离原子核较远,所受的束缚相对较弱。如果遇到吸引电子强的其他原子,这些最外层电子就会失去,从而发生化学反应。1962年,加拿大化学家首次合成了氙和氟的化合物。此后,氡和氪各自的化合物也出现了。
原子越小,电子所受约束越强,元素的"惰性"也越强,因此合成氦、氖和氩的化合物更加困难。赫尔辛基大学的科学家使用一种新技术,使氩与氟化氢在特定条件下发生反应,形成了氟氩化氢。它在低温下是一种固态稳定物质,遇热又会分解成氩和氟化氢。科学家认为,使用这种新技术,也可望分别制取出氦和氖的稳定化合物。
在加拿大工作的英国年轻化学家巴特列特(N.Bartlett)一直从事无机氟化学的研究。自1960年以来,文献上报道了数种新的铂族金属氟化物,它们都是强氧化剂,其中高价铂的氟化物六氟化铂(PtF6)的氧化性甚至比氟还要强。巴特列特首先用PtF6与等摩尔氧气在室温条件下混合反应,得到了一种深红色固体,经X射线衍射分析和其他实验确认此化合物的化学式为O2PtF6,其反应方程式为:
《中华人民共和国化工行业标准:灯泡用氩气》较以前版本修改了规范性引用文件;修改了技术要求;修改了检验方法,完善了氩气的功用及技术方法。《中华人民共和国化工行业标准:灯泡用氩气》中的标准依照GB/T 1.12009《标准化工作导则 第1部分:标准的结构和编写》的起草规则编制
氩弧焊机是使用氩弧焊的机器,采用高压击穿的起弧方式。氩弧焊即钨极惰性气体保护弧焊,指用工业钨或活性钨作不熔化电极,惰性气体(氩气)作保护的焊接方法,简称TIG。一般用于6~lOmm的薄板焊接及厚板单面焊双面成形的封底焊。常用的焊机有国产YC-150型手工钨极氩弧焊机
折叠非熔化极氩弧焊
非熔化极氩弧焊是电弧在非熔化极(通常是钨极)和工件之间燃烧,在焊接电弧周围流过一种不和金属起化学反应的惰性气体(常用氩气),形成一个保护气罩,使钨极端头,电弧和熔池及已处于高温的金属不与空气接触,能防止氧化和吸收有害气体。从而形成致密的焊接接头,其力学性能非常好。
熔化极氩弧焊
焊丝通过丝轮送进,导电嘴导电,在母材与焊丝之间产生电弧,使焊丝和母材熔化,并用惰性气体氩气保护电弧和熔融金属来进行焊接的。它和钨极氩弧焊的区别:一个是焊丝作电极,并被不断熔化填入熔池,冷凝后形成焊缝;另一个是采用保护气体,随着熔化极氩弧焊的技术应用,保护气体已由单一的氩气发展出多种混合气体的广泛应用,如Ar 80%+CO220%的富氩保护气。通常前者称为MIG,后者称为MAG。从其操作方式看,目前应用最广的是半自动熔化极氩弧焊和富氩混合气保护焊,其次是自动熔化极氩弧焊。
氩焊机与手弧焊机在主回路、辅助电源、驱动电路、保护电路等方面都是相似的。但它在后者的基础上增加了几项控制:1、手开关控制;2、高频高压控制;3、增压起弧控制。另外在输出回路上,氩弧焊机采用负极输出方式,输出负极接电极针,而正极接工件。
氩弧焊的起弧采用高压击穿的起弧方式,先在电极针(钨针)与工件间加以高频高压,击穿氩气,使之导电,然后供给持续的电流,保证电弧稳定。
氩弧焊机在主回路、辅助电源、驱动电路、保护电路等方面的工作原理是与手弧焊机是相同的。在此不再多叙述,而着重介绍氩弧焊机所特有的控制功能及起弧电路功能。
手开关控制
氩弧焊机要求氩气先来后走,而电流则后来先走(相对气而言),这此都是通过手开关控制实现的。
由图1知:当焊机主开关合上后,辅助电源工作,给控制电路提供了24V的直流
图1
图1
电。手开关未合上时,24V直流电通过电阻R5使Q2导通,CW3525芯片的8脚经过T形滤波器(L5、C5组成,抗干扰用)对地短路,此时,CW3525处于封波状态,电路无输出;手开关合上时,24V直流电通过电阻R4、R8使Q1导通,Q2基极被拉低而关断,24V直流电通过电阻R6、R7使Q3导通继电器J3A吸合,使控制气体供给的电磁阀工作,给焊接供气。而8脚电位由于缓起动电阻,电容的作用缓慢增长,经过一定时间,CW3525开始工作,电路开始输出功率。这样,电流就较气延时供给延时时间由缓起动动阻、容值决定)。
电磁阀为气体供给控制器件,当继电器J3A合上,电磁阀中的电感线圈获得电流,产生磁能,把铁块吸离气管管口,气体通过电磁阀供给焊接。
手开关控制电路中,电感线圈L1~L4及C1、C2起到防止干扰而使手开关误导通的作用。
1、 手开关合上时,由于Q3导通继电器J3A吸合,电磁阀打开供气。辅助电源向电容C17充电。而由于热敏电阻RT4、RT5的限流,使得手开关不到于因电流过大而损坏;
2、焊接结束,手开关断开后,Q2导通,CW3525的8脚电位被拉低,电路停止输出,而C17上仍充有电能,它通过R6、R7放电供给Q3导通,保持电磁阀导通延时供气。实现了焊接对电流、气体的控制要求。
广泛用于工业生产,特别是航空航天等军工和尖端工业技术所用的铜及铜合金、钛及钛合金、合金钢、不锈钢、钼等金属的焊接,如钛合金的导弹壳体,飞机上的一些薄壁容器等。
等离子弧的类型
按电源连接方式的不同,等离子弧有非转移型、转移型和联合型三种形式见图23。
(1)非转移型等离子弧 钨极接电源负端,喷嘴接电源正端,等离子弧体产生在钨极与喷嘴之间,在等离子气体压送下,弧柱从喷嘴中喷出,形成等离子焰。
(2)转移型等离子弧 钨极接电流负端,焊件接电流正端,等离子弧产生在钨极和焊件之间。因为转移弧能把更多的热量传递给焊件,所以金属焊接、切割几乎都是采用转移型等离子弧。
3)联合型等离子弧 工作时非转移弧和转移弧同时并存,故称为联合型等离子弧。非转移弧起稳定电弧和补充加热的作用,转移弧直接加热焊件,使之熔化进行焊接。主要用于微束等离子弧焊和粉末堆焊。
转移型等离子弧
为建立转移型等离子弧,应将钨极接电源负极,喷嘴和焊件同时接正极,转移型弧示意图见图24。首先接通钨极与喷嘴之间的电路,引燃钨极与喷嘴之间的电弧,接着迅速接通钨极和焊件之间的电路,使电弧转移到钨极和焊件之间直接燃烧,同时切断钨极和喷嘴之间的电路,转移型等离子弧就正式建立。
在正常工作状态下,喷嘴不带电,在开始引燃时产生的等离子弧,只是作为建立转移弧的中间媒介。
弧焊方法常用的等离子弧焊基本方法有小孔型等离子弧焊、熔透型等离子弧焊和微束等离子弧焊三种。
(1)小孔型等离子弧焊 使用较大的焊接电流,通常为50~500A,转移型弧。施焊时,压缩的等离子焰流速度较快,电弧细长而有力,为熔池前端穿透焊件而形成一个小孔,焰流穿过母材而喷出,称为 "小孔效应",其示意图见图25。随着焊枪的前移,小孔也随着向前移动,后面的熔化金属凝固成焊缝。由于等离子弧能量密度的提高有一定限制,因此小孔型等离子弧焊只能在有限厚板内进行焊接,见表2。
表2 小孔型等离子弧焊一次焊透厚度 (mm)
不锈钢 ≤8钛及钛合金 ≤12镍及镍合金 ≤6低合金钢 ≤7低碳钢 ≤8
(2)熔透型等离子弧焊 当等离子气流量较小、弧柱压缩程度较弱时,此种等离子弧在焊接过程中只熔化焊件而不产生小孔效应,焊缝成形原理与钨极氩弧焊相似,称为熔透型等离子弧焊,主要用于厚度小于2~3mm的薄板单面焊双面成形及厚板的多层焊。
(3)微束等离子弧焊 焊接电流30A以下熔透型焊接称为微束等离子弧焊。采用小孔径压缩喷嘴(ф0.6mm~ф1.2mm)及联合型弧,当焊接电流小至1A以下,电弧仍能稳定地燃烧,能够焊接细丝和箔材。
氧化碳、氩气自动化混合配气设备一、工作原理;本装置是二氧化碳通过调节阀调节,加入氩气中,获得稳定的具有一定比例的氩气和二氧化碳的混合气。
二氧化碳、氩气自动化混合配气设备一、工作原理;本装置是二氧化碳通过调节阀调节,加入氩气中,获得稳定的具有一定比例的氩气和二氧化碳的混合气。
二氧化碳、氩气自动化混合配气设备一、工作原理;本装置是二氧化碳通过调节阀调节,加入氩气中,获得稳定的具有一定比例的氩气和二氧化碳的混合气。具有自动调节功能。二、主要技术指标; 1、原料气;二氧化碳气压力≤0.7-0.9Mpa 氩气压力≤0.7-0.9Mpa 2、工作压力≤0.7-0.9MPa 3、混合气流量混合气含二氧化碳量20% 混合气压力≤0﹒4-0﹒5MPa 4、装机功率0﹒2KW 5、电源220V、50HZ
混合气体的性质取决于组成气体的种类和成分。 混合气体的成分有3种表示方法。
①容积成分:组成气体的分容积与混合气体的总容积之比,用ri表示
所谓分容积是指该组成气体在混合气体的温度和总压力下单独占有的容积。
②质量成分:组成气体的质量与混合气体的总质量之比,用wi表示
③摩尔成分:摩尔是物质的量单位。若一系统中所包含的基本单元(可以是原子、分子、离子、电子或其他粒子)数与0.012千克碳-12原子数目相等,则该系统的物质的量为 1摩尔。组成气体的摩尔数与混合气体的总摩尔数之比,用xi表示
常见的混合气体
干燥空气:21%氧气和79%氮气的混合气体
二氧化碳混合气体:2.5%二氧化碳+27.5%氮气+70%氦气
准分子激光混合气体:0.103%氟气+氩气+氖气+氦气混合气体
焊接混合气体:70%氦气+30%氩气混合气体
高效节能灯泡填充混合气体:50%氪气+50%氩气混合气体
分娩镇痛混合气体:50%笑气+50%氧气混合气体
血液分析混合气体:5%二氧化碳+20%氧气+75%氮气混合气体
储存于通风库房,远离火种、热源;气瓶应有防
倒措施。大于10立方米低温液体储槽不能放在室内。瓶装气体产品为高压充装气体,使用时应经减压降压后方可使用。包装的气瓶上均有使用的年限,凡到期的气瓶必须送往有部门进行安全检验,方能继续使用。每瓶气体在使用到尾气时,应保留瓶内余压在0.5MPa,最小不得低于0.25MPa余压,应将瓶阀关闭,以保证气体质量和使用安全。瓶装气体产品在运输储存、使用时都应分类堆放,严禁可燃气体与助燃气体堆放在一起,不准靠近明火和热源,应做到勿近火、勿沾油腊、勿爆晒、勿重抛、勿撞击,严禁在气瓶身上进行引弧或电弧,严禁野蛮装卸。
消防注意
灭火方法:本品不燃。切断气源。喷水冷却容器,可能的话将容器从火场移至空旷处[4]
储运注意事项
在储运过程中轻装轻卸,严防碰损,防止高温。氩气没有腐蚀性,在常温下可使用碳钢、不锈钢、铜、铜合金、等通用金属材料及一般的塑性材料和弹性材料。在低温下常用聚四氟乙烯和聚三氟氯化乙烯聚合体来作垫圈、隔膜等。[5]
氩气高纯氩气技术安全说明
1化学品及企业标识
中文名:氩气
英文名:Argon,
分子式:Ar
分子量:39.9
化学类别:不燃压缩气体
2成分/组成信息
主要成分:高纯氩气含量>t99.999%。纯氩含量I>99.994%
主萋虽堆:用于对不锈钢、镁、铝等的电弧焊接,即,“氩弧焊”。稀有金属及有色金属冶炼、半导体工业、色谱与光谱仪器的载气、配制标准气与混合气、灯泡气(注:纯氩不宜直接用作灯泡气)。
3危险性概述
危险性类别:第2.2类不燃压缩气体
侵入途径:吸入、眼/皮肤。
健康危害:
吸入:普通大气压下无毒,高浓度时,使氧分压降低而发生窒息。氩浓度达50%以上,引起严重症状;75%以上时,可在数分钟内死亡。当空气中氩浓度增高时,先出现呼吸加速,注意力不集中,共济失调。继之,疲倦乏力、烦躁不安、恶心、呕吐、昏迷、抽搐,以至死亡。
眼/皮肤:接触迅速蒸发的气体会引起冻伤。
4急救措施
吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输 氧。如呼吸停止,立即进行人工呼吸。就医。
5消防措施
燃烧性:不燃
闪点(℃):无意义
爆炸下限(%):无意义
爆炸上限(%):无意义
引燃温度(℃):无意义
危险特性:若遇高热,容器内压增大,有开裂和爆炸的危险。
灭火方法:本品不燃。切断气源。喷水冷却容器,可能的话将容器从火场移至空旷处。
6泄漏应急处理
迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿一般作业工作服。尽可能切断泄漏源。合理通风,加速扩散。漏气容器要妥善处理,修复、检验后再用。
7操作处置和储存
不燃性压缩气体。储存于阴凉、通风仓间内。仓内温度不宜超过40℃。远离火种、热源。防止阳光直射。应与易燃或可燃物分开存放。验收时要注意品名,注意验瓶日期,先进仓的先发用。搬运时轻装轻卸,防止钢瓶及附件破损。不得分装。钢瓶阀门操作必须使用标准的手轮。
8接触控制/个体防护
工作杨所职业接触限值
中国MAC(ra9/m3):无规定
美国ACGIH TLV—TWA: 单纯窒息性气体
工程控制:密闭操作。提供良好的自然通风条件。
呼吸系统防护:一般不需特殊防护。但当作业场所空气中氧气浓度低于18%时,必须佩戴空气呼吸器、氧气呼吸器或长管面具。
眼睛防护:一般不需特殊防护
身体防护:穿一般作业工作服。
手防护:戴一般作业防护手套。
其它:避免高浓度吸入。进入罐、限制性空间或其它高浓度区作业,须有
人监护。
9理化特性
外观与性状:无色无臭惰性气体。
熔点(℃):一l89.2
沸点(℃):一l85.9
相对密度(水=1):1.40(一186℃)
相对密度(空气=1):1.38
饱和蒸气压(kPa):202.64(一179℃)
辛醇/水分配系数的对数值:无资料
燃烧热(kJ/m01):无意义
临界温度(℃):一l22.3
临界压力(MPa):4.89
溶解性:微溶于水。溶于醇。
10稳定性和反应活性
稳定性:稳定
聚合危害:不聚合
避免接触的条件:高温
11毒理学资料
急性毒性
LD50:无资料
LC50:无资料
12环境生态资料
对环境无害。
13废弃处置
允许气体安全地扩散到大气中。
14运输信息
危规号:22011
UN编号:1006
包装分类:m
包装标志:5
包装方法:耐压钢瓶。
东莞市浩达工业气体有限公司是一家专业气体公司,拥有多家分公司,多个供应站专业气体配送,交货及时,凭着独特的地理位置,优质的产品,诚信的服务赢得了广大客户的认同和赞誉。宏达工业气体公司生产经营各种工业气体、高纯气体、电子气体、固态气体等,产品包括乙炔、氧、氩、氦、氖、氪、氙、氮、氢、二氧化碳、液氨,医用笑气、甲烷、乙烯、丙烷、正丁烷、硅烷、六氟化硫、四氟化碳等;同时提供各类规格的气体钢瓶,拥有雄厚的专业技术力量和物流服务,具有十多年危险品气体销售经验和广泛的销售市场、客户只要一个电话、一份传真(订单),您需要的货物就会按照您的要求,如期而至送到您的手上!热情服务,质量保证,价格合理,服务上乘,为客户提供安全可靠的生产运行保证。