• 宜春供应无线倾角传感器

    宜春供应无线倾角传感器

  • 2019-04-09 10:54 159
  • 产品价格:面议
  • 发货地址:上海市包装说明:不限
  • 产品数量:不限产品规格:不限
  • 信息编号:49742827公司编号:4214224
  • 李先生 经理
    17321051316 (联系我请说明是在阿德采购网看到的信息)
  • 进入店铺 在线咨询 QQ咨询
  • 信息举报
    产品描述
    一、倾角传感器原理


    倾角传感器经常用于系统的水平测量,从工作原理上可分为“固体摆”式、“液体摆”式、“气体摆”三种倾角传感器,下面就它们的工作原理进行介绍。


    1、“固体摆”式惯件


    固体摆在设计中广泛采用力平衡式伺服系统,如图1所示,其由摆锤、摆线、支架组成, 摆锤受重力G和摆拉力T的作用,其合外力F为:(1)


    其中,θ为摆线与垂直方向的夹角。在小角度范围内测量时,可以认为F与θ成线性关系。如应变式倾角传感器就基于此原理。


    2、“液体摆”式惯件


    液体摆的结构原理是在玻璃壳体内装有导电液,并有三根铂电极和外部相连接,三根电极相互平行且间距相等,如图2所示。当壳体水平时,电极插入导电液的深度相同。如果在两根电极之间加上幅值相等的交流电压时,电极之间会形成离子电流,两根电极之间的液体相当于两个电阻RI和RIII。若液体摆水平时,则RI=RIII。当玻璃壳体倾斜时,电极间的导电液不相等,三根电极浸入液体的深度也发生变化,但中间电极浸入深度基本保持不变。如图3所示,左边电极浸入深度小,则导电液减少,导电的离子数减少,电阻RI增大,相对较则导电液增加,导电的离子数增加,而使电阻RIII 减少,即RI>RIII。反之,若倾斜方向相反,则RI<RIII。


    在液体摆的应用中也有根据液体位置变化引起应变片的变化,从而引起输出电信号变化而感知倾角的变化。在实用中除此类型外,还有在电解质溶液中留下一气泡,当装置倾斜时气泡会运动使电容发生变化而感应出倾角的“液体摆”。


    3、“气体摆”式惯件


    气体在受热时受到浮升力的作用,如同固体摆和液体摆也具有的敏感质量一样,热气流总是力图保持在铅垂方向上,因此也具有摆的特性。“气体摆”式惯性元件由密闭腔体、气体和热线组成。当腔体所在平面相对水平面倾斜或腔体受到加速度的作用时,热线的阻值发生变化,并且热线阻值的变化是角度q或加速度的函数,因而也具有摆的效应。其中热线阻值的变化是气体与热线之间的能量交换引起的。


    “气体摆”式惯件的敏感机理基于密闭腔体中的能量传递,在密闭腔体中有气体和热线,热线是一的热源。当装置通电时,对气体加热。在热线能量交换中对流是主要形式。


    对流传热的方程为:(2)


    其中:h—热量传递系数(w/m2×k),s—热线表面积(m2),TH—热线温度(K),TA—气体温度(K)。


    热量传递系数h与流体的热传导率、动力学粘度、流体速度和热线直径有关,表示为:(3)


    其中:Nu为—努塞尔(Nusselt)数,l—热传导率(W/mK),Re—雷诺(Reynold)数,U—流体速度(m2/s),D—热线的直径(m),n—流体的动力学粘度。


    当气流以速度U垂直穿过热线时,(4)


    将(4)式代入(3)式得:(5)


    根据热平衡方程可得:


    所以:(6)


    假设和s为常数,则有:(7)


    从式(7)可以看出,当流体的动力学粘度、密度和热传导特性一定时,若热线周围流体的速度不同,则流过热线的电流也不同,从而引起热线两端的电压也产生相应的变化。气体摆式惯件就是根据一原理研制的。


    气体摆式检测器件的**敏感元件为热线。电流流过热线,热线产生热量,使热线保持一定的温度。热线的温度**它周围气体的温度,动能增加,所以气体向**动。在平衡状态时,如图4(a)所示,热线处于同一水平面上,上升气流穿过它们的速度相同,即V1=V1′,这时,气流对热线的影响相同,由式(7)可知,流过热线的电流也相同,电桥平衡。当密闭腔体倾斜时,热线相对水平面的高度发生了变化,如图4(b)所示,因为密闭腔体中气体的流动是连续的,所以热气流在向上运动的过程中,依次经过下部和上部的热线。若忽略气体上升过程中克服重力的能量损失,则穿过上部热线的气流已经与下部热线的产生热交换,使穿过两根热线时的气流速度不同,这时V2¢>V2,因此流过两根热线的电流也会发生相应的变化,所以电桥失去平衡,输出一个电信号。倾斜角度不同,输出的电信号也不同。


    二、固、液、气体摆性能比较


    就基于固体摆、液体摆及气体摆原理研制的倾角传感器而言,它们各有所长。在重力场中,固体摆的敏感质量是摆锤质量,液体摆的敏感质量是电解液,而气体摆的敏感质量是气体。


    气体是密封腔体内的一运动体,它的质量较小,在大冲击或高过载时产生的惯性力也很小,所以具有较强的抗振动或冲击能力。但气体运动控制较为复杂,影响其运动的因素较多,其精度无法达到*武器系统的要求。


    固体摆倾角传感器有明确的摆长和摆心,其机理基本上与加速度传感器相同。在实用中产品类型较多如电磁摆式,其产品测量范围、精度及抗过载能力较高,在武器系统中应用也较为广泛。


    液体摆倾角传感器介于两者之间,但系统稳定,在高精度系统中,应用较为广泛,且国内外产品多为此类。
    无线传感器网络在禽舍中的应用
    我国禽舍设施的现代化程度还不太高,与发达国家相比存在一定的差距。近年米在研究国外禽舍设施技术的基础上,我国的禽舍设施对微型计算机的应用,在总体上正从消化吸收、简单应用阶段,向实用化、综合性应用阶段过渡和发展。现有的禽舍监测系统中数据的采集火多采用传统的有线方式,需要铺设大量的信号传输线,既增加了较新维护的难度,又降低了监测的可靠性和操作的灵活性。随着射频技术的发展,无线技术越米越成熟,使禽舍环境实现无线监测成为可能,目前无线技术在国外的畜禽养殖中已得到应用。 1 禽舍采用无线监测的必要性 我国农业正在从粗放型向集约型转变,实现畜禽养殖的自动化与智能化已成一种趋势,无线传感器网络在禽舍环境监测中的应用顺应了时代的要求。无线传感器网络与传统的禽舍环境监控方式相比有三大优势:一是传感器节点的体积很小且整个网络只需要部署一次,因此减少r人为因素对禽舍环境的影响;二是传感器网络节点数量大,每个节点都可以检测到局部环境的详细信息并汇总到汇聚节点,因此传感器网络具有数据采集量大、精度高的特点;三是无线传感器节点本身具有一定的计算能力和存储能力,可以根据物理环境的变化进行较为复杂的监控,传感器节点还具有无线通信功能,可以在节点间进行协同监控。 节点的计算能力和无线通信功能使得传感器网络能够重新编程和重新部署,对环境的变化、传感器网络自身变化以及网络控制指令做出及时反应,因而传感器网络非常适用于禽舍环境的监测。 2禽舍环境监测应用的传感器网络结构 适用于禽舍环境监测的传感器网络结构见图1。传感器节点被大量部署在禽舍环境的监控区域内,自主形成传感器网络。传感器节点将检测到的数据传送到汇聚节点,汇聚节点负责将传感器节点传来的数据传送给终端。 传感器节点自主形成一个多跳网络,处于网络边缘的节点必须通过其他节点向汇聚节点发送数据。每个传感器节点都能检测禽舍环境的温度、湿度、光照等信息,也可以变换监测目标和监测内容。由于传感器节点具有计算能力和通信能力,可以在传感器网络中对采集的数据进行数据融合处理。这样可以减少数据通信量,节省传感器节点的能量。 2.1节点及节点部署 根据禽舍环境特点的要求,传感器节点需要满足体积小、精度高、生命周期长等的特点。目前使用比较多的是加州伯克利分校研制的Mote节点,即通过扩展板的方式带有一个**的传感器板,板上载有光照传感器、温湿度传感器以及大气压传感器等。 传感器节点在系统中负责完成两方面的工作:一是接收分析用户的监测指令,并根据指令中的参数要求对环境数据进行检测采集;二是通过无线系统将采集的数据发送到汇聚节点。汇聚节点主要负责接收传感节点传来的数据,调度传感节点的运行,实现采集数据的上传和用户指令的下发,汇聚节点是用户和传感节点信息传输的桥梁。汇聚节点除了具备与传感节点同样结构和功能的无线收发模块外,还具有功能强大的处理模块和大容量的存储模块。 如何在禽舍中布置传感节点,直接影响到整个系统的工作效率和投资成本。只有合理的布置节点,才能充分发挥系统高效率和低能耗的优势。关于节点布置的问题在不同的背景下已被研究。确定性布置和自组织布置是节点布置的两种方式。 禽舍中节点的部置还应考虑区域的覆盖和节点问的连接等问题。所谓的覆盖问题,就是我们所监测的目标区域内,都能被传感节点检测到,其实质就是在兼顾节点间通信的基础上,实现监测范围的较大化;每个传感节点都能与汇聚节点通信称为连接,如果系统中存在不连接的节点,某些子区域感测到的信息将成为无效信息。在温室中布置传感节点时,需要考虑有多少个传感节点负责某个参数的测量,决定数量后,要解决怎样准确布置这些节点才能够使得系统效率较高、能耗较低。 2.2节点能量管理 禽舍环境的监测是长时间的连续监测,这对节点能量的供应提出了很高的要求。在传感器网络中,节点对能量的使用是不同的,汇聚节点需要更多的能量接收和发送数据包,网络边缘节点会将能量主要用在数据的搜集上。因此节点在能量的消耗上出现了瓶颈问题。在应用中需要考虑能量消耗较快的节点,并采取一定的节点冗余措施以保证数据传输不会因为个别节点的失效而中断。表1给出了传感器节点操作及消耗电量的关系。 节点节省能量主要采用休眠机制,即当一个传感器节点有任务时,只有与其相邻区域内的传感器节点处于活动状态,其余的处于关闭状态。 2.3 s-MAC协议在禽舍无线传感器网络中的应用 设计无线传感器网络MAC协议时,应当考虑的属性有:节省能量、网络的可扩展性和网络效率。目前,在MAC协议的设计中,往往是通过降低网络的公平性,增加网络的延时、吞吐量,米换取协议的能量有效性。 S-MAC(sensor MAC)协议是在802.11MAC协议基础上,针对传感器网络的节省能量需求而提出的传感器网络MAC协议。S-MAC协议通过周期性休眠获得低占空比运行,通过选择和维护休眠调度表,使相邻节点组成休眠/唤醒自动同步的虚拟组,从而实现信息传输的同步,并减少控制开销。其特点是形成一个使相邻节点都能自由通信的平面拓扑结构,同步节点形成一个无簇内通信的虚拟组,很容易适应拓扑结构的改变。 假设通常情况下传感器网络的数据传输量少,节点协同完成相同的任务,网络内部能够进行数据处理和融合以减小数据通信量,网络能够容忍一定程度的通信延迟,既提供了良好的扩展性,义减少了节点能量的消耗。 无线传感器网络应用到禽舍中,建立禽舍无线监测系统,实现了对禽舍信息的无线采集和畜禽养殖业的自动化与智能化,对于提高畜禽的产量,具有重要的现实意义。同时它的发展和应用对现代科学技术产生了较其重要的影响,在*、医疗、环境监测、家庭自动化和其他领域具有广阔的应用前景。 赵建华,韩玉杰 (东北林业大学,黑龙江哈尔滨 150040) 中国家禽2010.3 江洪涛采集审核;程彬彬编辑上传。
    宜春供应无线倾角传感器
    无线传感器网络节点硬件的模块化设计
    无线传感器网络节点硬件的模块化设计
    随着人们对于环境监测要求的不断提高,无线传感器网络技术以其投资成本低、架设方便、可靠性高的性能优势得到了比较广泛的应用。由于无线传感器网络节点需要实现采集、处理、通信等多个功能,因此硬件上采用模块化设计可以大大提高网络节点的稳定性和安全性。1 CC2430芯片简介 CC2430是一款工作在2.4 GHz免费频段上,支持IEEE 802.15.4标准的无线收发芯片。该芯片具有很高的集成度,体积小功耗低。单个芯片上整合了ZigBee射频(R


    随着人们对于环境监测要求的不断提高,无线传感器网络技术以其投资成本低、架设方便、可靠性高的性能优势得到了比较广泛的应用。由于无线传感器网络节点需要实现采集、处理、通信等多个功能,因此硬件上采用模块化设计可以大大提高网络节点的稳定性和安全性。
    无线传感器网络系统结构
    整个无线传感器网络由若干采集节点、1个汇聚节点、1个中转器、1个上位机控制中心组成,系统结构如图1所示。无线传感器网络采集节点完成数据采集、预处理和通信工作;汇聚节点负责网络的发起和维护,收集并上传数据,将中转器下发的命令通告采集节点;中转器负责上传收集到的数据并将控制中心发出的命令信息传递给汇聚节点;控制中心负责处理较终上传数据,并且可以由用户下达网络的操作命令。
    采集节点和汇聚节点由CC2430作为控制**,采集节点可采集并传递数据,汇聚节点负责收集所有采集节点采集到的数据。中转器采用ARM处理器作为控制**,和汇聚节点采用串口通信,以GPRS通信方式和上位机控制中心进行交互。上位机控制中心实现人机交互,可以处
    理、显示上传的数据并且可以直接由客户下达网络动作执行命令。
    无线传感器网络技术
    无线传感器网络(Wireless Sensor Network, WSN)就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织的网络系统,其目的是协作地感知、采集和处理网络 覆盖区域中被感知对象的信息,并发送给观察者。传感器、感知对象和观察者构成了无线传感器网络的三个要素。


    无线传感器网络 (wireless sensor network)简称WSN,是一种由大量小型传感器所组成的网络。这些小型传感器一般称作sensor node(传感器节点)或者mote(灰尘)。此种网络中一般也有一个或几个基站(称作sink)用来集中从小型传感器收集的数据。


    传感器节点是一种非常小型的计算机,一般由以下几部分组成:


    1.处理器和内存(一般能力都比较有限)。


    2.各类传感器(温度、湿度、声音、加速度、**定位等)。


    3.通讯设备(一般是无线电收发器或光学通信设备)。


    4.电池(一般是干电池,也有使用太阳能电池的)。


    5.其他设备,包括各种特定用途的芯片,串行并行接口等(USB,RS232)。


    无线传感器网络中的基站的作用是从各个传感器节点收集数据,集中处理然后提交给用户。因此,基站一般有较强的数据处理和通讯能力以及较持久的电力。


    DL-WZXT无线传感器网络是新一代的传感器网络。DL-WZXT无线传感网络综合了传感器技术、嵌入式计算技术、现代网络及无...无线传感器网络 的详细介绍 DL-WZXT无线传感器网络 DL-WZXT无线传感器网络是新一代的传感器网络,具有非常广泛的应用。
    宜春供应无线倾角传感器
    倾角传感器有哪些用途? 倾角传感器用于各种测量角度的应用中。例如,高精度激光仪器水平、工程机械设备调平、远距离测距仪器、高空平台安全保护、定向卫星通讯天线的俯仰角测量、 船舶航行姿态测量、盾构**管应用、大坝检测、地质设备倾斜监测、火炮炮管初射角度测量、雷达车辆平台检测、卫星通讯车姿态检测等等。下面就广泛应用的几个 做简略介绍。
    海事地理 山体滑坡,雪崩——双轴倾角传感器,如 NA5200 系列倾角传感器配合液位传感器用于山体滑坡或雪崩监测,通过无线传感系统将数据传输到中央控制系统,实时监测山体状态,可以有效减小 山体滑坡带来的损失。
    l 建筑工程 高层建筑安全监测——目前世界上摩天大楼越来越多,为了监测大楼的安全性能,可以应用 SX41400 系列高精度的伺服倾角传感器,该系列倾角传感器可以感应微小角度的变化,可以用于大楼摆幅、震动、倾斜等监测。 l 水库大坝 大坝安全监测——大坝垮塌事故已经发生多次,为了及时发出预警信号,减少财产损失,通过倾角传感器的监测、观测仪器和设备,以及时**反映大坝和基岩性态 变化以及环境对大坝作用的各种数据的观测和资料处理等工作。其目的是分析估计大坝的安全程度,以便及时采取措施,设法保证大坝安全运行。 l 挖掘机械 挖掘机——为了实现挖掘机的三维空间定位,在安装工作装置各关节角度传感器的基础上,又安装平台回转角度检测装置和平台倾角传感器,并在斗杆上安装激光接 收仪用于检测地面激光**器**的水平机关相对于接收仪零位的高度。建立挖掘机的运动学模式,推导车体相对于大地的坐标变换矩阵,即完成三维空间的车体定 位,并得到常用简单的车体高程定位公式,实现挖掘机挖掘轨迹的三维空间定位为实现挖掘机的三维空间轨迹精确与挖掘机深度控制打下基础。 l 现代汽车 汽车四轮定位——随着电子技术的发展和应用,汽车的安全性、舒适性和智能性越来越高。汽车侧向倾斜角度传感器的应用是防止汽车在行驶中发生倾翻事故的一种 有效方法。是提高汽车安全性的重要措施,特别是越野车。双层客车等重心较高的汽车较有必要性。汽车倾翻的实质是:行驶中向外的倾翻力矩大于向里的稳定力 矩,当重心高度一定时,倾斜力矩油倾翻力(向外的侧向力)决定。 l 机器人
    机器人——近年来机器人技术发展很快,欧美等工业发达国家早就开始对各种机器人进行系统的研究,随着科技的进步和时间的推移,**了大量的研究成果。我们知道机器人上应用了大量的传感器,其中倾角传感器可以实时监测机器人的状态。 l 铁路铁轨 轨检仪——目前的轨道测量方式智能程度差,测量精度低,操作时间长,迫切需要设计一种适用于一般使用的便携式智能化轨道检测仪倾角传感器用于轨检仪,用于实时检测铁道的倾斜度和高度差。 输电线铁塔倾斜智能监测——输电线铁塔的倒塌事件时有发生,一旦发生倒塌,将会造成巨大的损失,倾角传感器应用于输电线铁塔倾斜角度监测,可以实时监
    测输电线倾斜角度,一旦因为大风等自然灾害导致倾斜角度过大,实时发出预警信号,由工作人员维修减少损失。 l 平台控制 船载水平平台——倾角传感器在船载水平平台上应用,用于船载卫星跟踪天线的底座,以保持天线始终处于水平状态,对平台进行实时控制,可以隔离船体的俯仰和横滚运动,使平台处于水平。 l 太阳能 太阳能——太阳能是一种清洁的能源,它的应用正在世纪范围内普遍的增长,利用太阳能发电就是一个使用太阳能的方式,因此为了得到充足的利用太阳能,如何选择太阳能电池方位角与倾斜角是一个重要的问题,利用倾角传感器调整角度,将太阳能的利用率进一步提高。 除了以上所介绍的,我公司倾角传感器主要还用在: 自动导航装置 失速报警 飞行测试 天线定位和控制 导弹竖立检测 平台稳定控制 船舶姿态控制 远程水下控制 驳船调平 自动导航装置 导弹推进 油/气井测量 路基检测 机械设备控制迎角测量 疲劳检测 惯导系统 火控系统 直升机姿态控制 地面导航系
    GPRS水文监测 地下水监测 GPRS无线传感器
    地下水监测系统依靠地下水传感器,将采集到的数据,通过GPRS网络传输到监测中心,工作人员可以在监测中心查看地下水的水位、温度、电导率的数据。监测中心的监测管理软件能够实现数据的远程采集、远程监测的所有数据进入数据库,可实现报表或曲线图。
    地下水监测系统主要由:地下水传感器、可编程采集终端、GPRS通讯终端、数据接收监测中心。


    水文监测终端广泛应用于雨量、水位、墒情、地下水、井下水位监测。


    GPRS通讯网络


    西安达泰电子的DTP-S09D设备通过GPRS/GSM网络信号覆盖,具有范围广、通信质量可靠、误码率低、运行稳定、数据传输实时性、安全性和可靠性高、按信息流量计费,使用灵活成本经济。
    系统结构:


    中心具备宽带网络或移动通讯GPRS的*占用网络通道。服务器,操作系统和系统监控软件(可用组态王),不间断存储数据。
    中心监控软件除管理员外,其它工作人员经授权后可在自己的计算机上进行权利范围内的操作。被授权者在任何地方的计算机上都可以通过INTERNET公网访问和操作该系统。
    倾角传感器用来测量相对于水平面的倾角变化量。


    倾角传感器的原理及技术


    理论基础就是牛顿*二定律,根据基本的物理原理,在一个系统内部,速度是无法测量的,但却可以测量其加速度。如果初速度已知,就可以通过积分计算出线速度,进而可以计算出直线位移。所以它其实是运用惯性原理的一种加速度传感器。


    倾角传感器的应用

    倾角传感器用于各种测量角度的应用中,例如,高精度激光仪器水平,起重机等机械设备的水平,远距离测距仪器
    如何选用倾角传感器

    零点稳定性和分辨率是选择倾角传感器重要的参数。如果稳定性不好,会影响到仪器的测量精度。分辨率是能检测出的较小角度/加速度单位。

    长期稳定性是另外一个重要的指标。根据应用来选择合适的稳定性,例如应用环境和是否经常需要重新标定。

    传感器自身的噪声和电磁干扰决定传感器的分辨率。通过优化EMC保护来抗这些电磁干扰,使得精度较大化。


    灵敏度,越灵敏越好,能得到较准确的测量值,但是灵敏度高相对于测量范围就窄,所以要从需求出发,不能一味追求灵敏度增加成本。
    -/gjjici/-

    上海豫淞电子科技有限公司,简称豫淞科技(YUSONG TEST)。豫淞科技有限公司是一家致力于工业物联网系统解决方案的供应商,产品涉及工业测量,工业安全防护,自动化检测,物流系统解决方案四块领域。 公司是以技术研发为基础,服务客户为**,以完善自身汇报社会为目的科技型企业,致力于成为行业内无线智能企业,为客户提供智能传感器, 无线加速度传感器,无线振动传感器,无线倾角传感器,无线温度传感器,无线压力传感器,无线力传感器,无线数据采集端,综合性智能传输基站,无线传感解决方案。 围绕客户需求,以智能化,微型化,网络化为方向的技术创新,提供高品质化系统,为客户创造大**。 运用数字信息技术,打造工业物联网系统,让物质文明充斥每个角落。 豫淞科技坚持以客户至上的原则,致力成为是成为设备状态检测、故障诊断系统解决方案企业

    欢迎来到上海豫淞电子科技有限公司网站,我公司位于历史文化悠久,近代城市文化底蕴深厚,历史古迹众多,有“东方巴黎”美称的上海市。 具体地址是上海公司街道地址,负责人是李先生。
    主要经营无线倾角传感器。
    本公司在机械产品这一领域倾注了无限的热忱和激情,公司一直以客户为中心、为客户创造价值的理念、以品质、服务来赢得市场,衷心希望能与社会各界合作,共创成功,共创辉煌,携手共创美好明天!

    本页链接:http://www.cg160.cn/vgy-49742827.html
    以上信息由企业自行发布,该企业负责信息内容的完整性、真实性、准确性和合法性。阿德采购网对此不承担任何责任。 马上查看收录情况: 百度 360搜索 搜狗
上海豫淞电子科技有限公司,简称豫淞科技(YUSONG TEST)。豫淞科技有限公司是一家致力于工业物联网系统解决方案的供应商,产品涉及工业测量,工业安全防护,自动化检测,物流系统解决方案四块领域。 公司是以技术研发为基础,服务客户为**,以完善自身汇报社会为目的科技型企业,致力于成为行业内无线智能企业,为客户提供智能传感..
相关分类
附近产地