优尔鸿信塑料检测实验室,多年从事塑料的各项性能指标检测服务,有丰富的测试经验和的检测设备,如静态热机械分析仪(TMA)、差示扫描量热仪(DSC)、热裂解PY-GCMS、表面阻抗测试仪等,可开展塑料及高分子材料的热学性能、物理性能、机械性能、成分分析及失效分析等综合性检测服务。
热机械分析(Thermomechanical Analysis, TMA)是一种用于测量材料尺寸随温度变化的分析技术。这种技术广泛应用于聚合物科学、陶瓷、金属以及复合材料的研究中。在高分子材料学领域,TMA可以提供关于材料热膨胀系数、软化点、玻璃化转变温度等关键性能参数的重要信息,对于理解材料行为、优化加工条件以及产品设计具有重要意义。
热机械分析(TMA)测试能够提供多种参数,这些参数有助于深入理解材料的热性能和机械性能。
常见的TMA测试参数:
线性热膨胀系数:用于评估材料在温度变化时的尺寸稳定性,特别是在精密工程和电子封装领域。
体积热膨胀系数:对于需要考虑三维尺寸变化的应用重要,如容器和管道的设计。
玻璃化转变温度:Tg是评估材料使用温度范围的重要参数,对于塑料和橡胶材料尤为重要。
软化点:用于评估材料的耐热性能,特别是在高温环境下的应用。
收缩率:材料在冷却过程中尺寸减小的程度,对于注塑成型和铸造工艺中的材料选择和工艺优化至关重要。
蠕变:用于评估材料在长期载荷下的稳定性和寿命。
热膨胀曲线:提供材料在整个温度范围内的热膨胀行为,有助于材料的综合评估。
相变温度:材料发生相变的温度,如结晶、熔融等,用于研究材料的相变行为,对于多晶材料和合金尤为重要。
应力-应变关系:用于评估材料的力学性能,特别是在高温或低温环境下的表现。
热分解温度:材料开始发生热分解的温度,用于评估材料的热稳定性,特别是在高温环境下的应用。
塑料固化度这一概念主要存在于热固性塑料中,热固性塑料在加工过程中会发生固化反应,形成交联结构,从而使其具有稳定的形状和性能。固化度是衡量热固性塑料固化程度的一个重要指标,它反映了塑料中树脂分子的交联程度。如醛树脂的固化反应。这些反应通过树脂分子中的官能团进行交联,形成稳定的网络结构。在固化过程中,官能团的转化率会直接影响固化度,进而影响塑料的性能。
塑料固化度的影响
固化度不足可能导致塑料的强度、硬度和耐热性降低,而固化过度则可能引起塑料的脆化和开裂。因此,在塑料加工过程中,需要严格控制固化条件,以确保塑料具有适当的固化度。
塑料固化度检测方法
化学分析法:化学分析法通过测定未反应的官能团含量来确定固化度。例如,对于含有羟基的树脂,可以通过酸碱滴定法来测量残留羟基的数量;对于含有双键的树脂,则可以使用碘值法来测定未反应双键的数量。
红外光谱法(FTIR):利用红外光谱仪对样品进行扫描,通过比较特定吸收峰的强度变化来计算固化度。这种方法快速且非破坏性,适合于实验室研究和质量控制。
差示扫描量热法(DSC):DSC是一种热分析技术,能够测量材料在加热或冷却过程中释放或吸收的热量。对于热固性塑料而言,未完全固化的树脂在加热时会继续发生放热的固化反应。通过分析DSC曲线上的放热峰,可以估计出剩余可固化树脂的比例,进而推算出固化度。
动态力学分析(DMA):DMA用于测量材料在受力变形下的响应,特别是在不同温度下材料的模量和阻尼特性。固化度会影响材料的动态力学性能,因此通过DMA可以间接评估固化度。
热重分析(TGA):TGA是一种测量材料随温度升高而失重的技术。对于某些类型的热固性塑料,未完全固化的部分可能在高温下分解或挥发,通过测量这种质量损失可以估计固化度。
固化度检测的意义
产品质量控制:确保产品满足设计要求,避免因固化不足导致的性能下降。
工艺优化:帮助调整生产参数,如温度、时间和压力,以提高生产效率和产品质量。
故障诊断与分析:当成品出现质量问题时,固化度测试可以帮助识别是否由于固化过程中的问题导致。
UL94测试是由美国保险商实验室(Underwriters Laboratories,简称UL)制定的一项标准,用于评估材料的阻燃性能。这一测试广泛应用于评估电子产品的外壳、内部部件以及其他易燃部件的阻燃能力。通过UL94测试,可以确保材料在遇到火焰时能够减少火势蔓延的风险,从而提高产品的安全性能。
UL94测试包含多种阻燃等级,每个等级对应着不同的阻燃性能,主要等级及测试要求如下:
HB级:水平燃烧测试(Horizontal Burning Test)。要求对于3到13毫米厚的样品,燃烧速度小于40毫米每分钟;小于3毫米厚的样品,燃烧速度小于70毫米每分钟;或者在100毫米的标志前熄灭。HB级不包括滴落物测试。
V-2级:垂直燃烧测试。允许样品在火焰移开后继续燃烧一段时间,并允许滴落物点燃位于样品下方的棉垫。
V-1级:类似于V-2级,但在火焰移开后不允许样品继续燃烧**过60秒,并且不允许滴落物点燃下方的棉垫。
V-0级:严格的垂直燃烧测试。火焰移开后不允许样品继续燃烧**过10秒,并且不允许滴落物点燃下方的棉垫。
5VA与5VB级:这两个级别测试样品在垂直位置放置,使用较大功率的火焰源(5VA使用50瓦火焰,5VB使用500瓦火焰)。5VA不允许滴落物,而5VB允许少量的滴落物。
此外,UL94还包括VTM-0、VTM-1、VTM-2(适用于塑料薄膜)、HBF、HF1、HF2(适用于发泡材料)等阻燃等级。
UL94阻燃测试是保证高分子材料阻燃性能的重要手段之一,通过该测试可以确保产品的安全性能,从而保护用户的财产和生命安全。
塑料拉伸试验是在标准化的试验条件下,将塑料试样加在牢固的夹具上进行单向拉伸,记录不同加载下的应变和应力,进而计算出塑料的力学性能,包括强度、刚度、延伸率等。
试验通常使用通用试验机,该机器提供恒定的延伸率,因为塑性拉伸试验行为取决于试验机的速度。机器上装载的试样按照ASTM、DIN、ISO拉伸试样尺寸进行设置。测试过程中,需要在规定的试验温度、湿度和拉伸速度下,对塑料样品的纵轴方向施加拉伸载荷,使样品变形,直至材料损坏,记录样品损坏时大负荷和相应标记间距的变化。
拉伸应力-应变曲线分析
拉伸应力-应变曲线是塑料拉伸试验的**结果之一,它描绘了试样在拉伸过程中应力与应变的关系。这条曲线通常分为几个阶段:
弹性阶段:
在拉伸初期,应力与应变成正比,试样表现出弹性行为。这一阶段内,卸载后试样能够完全恢复原状。
弹性模量(或称为杨氏模量)是这一阶段的重要参数,它表示了材料抵抗变形的能力。
屈服阶段:
随着应变的增加,应力达到一个大值(屈服强度),之后应力开始下降,但试样并未立即断裂。
屈服阶段反映了材料从弹性到塑性的转变。
强化阶段:
在屈服之后,一些材料会经历一个应力重新上升的阶段,称为强化阶段。
这是因为材料内部的分子链或纤维在屈服后发生了重新排列,使得材料在一定程度上恢复了抵抗变形的能力。
断裂阶段:
终,试样达到断裂点,应力迅速下降,试样分离成两部分。
断裂强度(或称为抗拉强度)是试样在断裂前所能承受的大应力。
断裂伸长率是试样断裂时的应变值,反映了材料的韧性。
拉伸试验结果分析:
弹性模量(E):曲线初始直线段的斜率。
屈服强度(σ_y):曲线开始偏离直线段的点对应的应力值。
抗拉强度(σ_b):曲线上的大应力值。
断裂伸长率(ε_f):试样断裂时的应变值。
优尔鸿信检测技术(深圳)有限公司旗下的成都检测中心(华南检测中心成都分支)成立于1996年,配合高科技电子产品设计、验证、生产过程的检测需求组建科技实验室,创始团队汇集科技精英、凭借雄厚的技术背景和开拓创新精神,在一张白纸上点石成金。华南检测中心迄今发展成目**大功能22个专业的实验室,主要检测设备4300余台(套),拥有1500人的管理、技术人员团队,打造了一个提供快速、精密、准确检测能力、服务网络遍及全国的大型旗舰实验室。于2003年**中国国家合格评定**(CNAS)的初次认可,检测能力获得苹果、戴尔、惠普等**客户的认可,实现[一份报告、**通行]。 检测业务主要分为:尺寸量测与3D工程、仪器校准、材料分析(金属、塑料)、有害物质检测、电子零组件失效分析、物流包装测试、可靠性分析(气候、机械)、仿真分析、热传测试、声学测试、食材检测(微生物、理化检测)、儿童玩具测试、汽车材料及零部件检测、产品认证等。