贵州EDI**纯水系统,纯水处理设备系统
受成本、环境和质量因素的影响, **纯水的生产工艺在近的几十年内经历了很多变化。一个趋势特别明显,即减少对离子交换(IX)的依赖程度,其目的在于将化学使用减少到,并提高水的利用率。
反渗透(RO)技术能将水中95%-98%的离子去除,从而减少了酸碱的用量,但还不能完全不使用化学。为了制备**纯水,通常采用反渗透+混床工艺。混床离子交换技术一直作为**纯水制备的标准工艺。由于其需要周期性的再生,在再生过程中使用相应的化学(酸碱),已无法满足现代工业清洁生产和环保的需要。于是将电渗析技术和离子交换技术**结合形成的EDI技术成为水处理技术的一场革命。
电去离子(Electrodeionization 简称EDI)是将电渗析膜分离技术与离子交换技术**地结合起来的一种新的制备**纯水(高纯水)的技术,它利用电渗析过程中的较化现象对填充在淡水室中的离子交换树脂进行电化学再生。
EDI膜堆主要由交替排列的阳离子交换膜、浓水室、阴离子交换膜、淡水室和正、负电极组成。在直流电场的作用下,淡水室中离子交换树脂中的阳离子和阴离子沿树脂和膜构成的通道分别向负极和正极方向迁移,阳离子透过阳离子交换膜,阴离子透过阴离子交换膜,分别进入浓水室形成浓水。同时EDI进水中的阳离子和阴离子跟离子交换树脂中的氢离子和氢氧根离子交换,形成**纯水(高纯水)。**极限电流使水电解产生的大量氢离子和氢氧根离子对离子交换树脂进行连续的再生。传统的离子交换,离子交换树脂饱和后需要化学间歇再生。而EDI膜堆中的树脂通过水的电解连续再生,工作是连续的,不需要酸碱化学再生。
应用领域
EDI**纯水技术具有技术、操作简便、无污染,是清洁生产技术,在微电子工业、电力工业、工业、化工工业和实验室等领域得到日趋广泛的应用。
目前市场上纯净水的供给主要以瓶装和罐装为主,虽然其具有便捷、运输方便等优点,但从造价成本方面来考虑,管网供水不失为一种较经济、方便的供水方式。由于目前国内还没有关于纯净水管网设计的标准、规范,现综合笔者对多个纯净水工程的设计经验和体会,针对纯净水管路设计总结了几点看法,敬请**提出宝贵意见和建议,共同交流。
1 管网布置
为避免形成管路二次污染及“死水”现象,整个供水管网应布置成同程式循环管路,图1是笔者常采用的几种布置方式。图1(a)适用于高度<50 m、立管数较少的建筑物。
(b)适用于高度>50 m、立管数较多的高层建筑。
(c)适用于单幢小高层或高层建筑。前者的循环泵既可放在屋顶,也可放在地面设备间;后者的循环泵应放在地面,而且管路中要考虑减压问题。
(d)适用于多幢多层或小区建筑。
(e)适用于高、多层的群体建筑。
无论采用哪种管网形式,都必须进行管网平差,否则仍然有可能存在回水不畅、“死水”的问题。
3 供水方式
总的来说,管道纯净水的主要供水设备有循环泵、变频泵、电磁阀等,供水方式也不外乎以上设备的几种组合。
循环泵可根据建筑物的规模及具体情况而设置,这种方式要求循环泵定时循环且应避开用水高峰以延长水泵的使用寿命。泵启停次数不宜过繁,不要**过6次/h,循环按给水的80%计。此供水方式的优点是既可保证水量、水压的要求,又可节能。缺点是:制水设备只能放在屋顶,对建筑的要求很高而且给安装维修、管理带来不便。
②变频供水
a.变频泵+循环泵+电磁阀联合供水
如图1中的(a)、(b)、(d)、(e)所示,白天电磁阀关闭,变频泵根据用户用水情况自动变频供水。夜间变频泵停止工作,电磁阀打开,循环泵工作。循环水量可按给水量的计,循环时间一般为2 h,这样既可保证白天水量的供应又可节约电能,缺点是使用了变频设备造价较高。
b.变频泵供水
如图1中的(a)、(b)、(d)、(e),把其中的电磁阀去掉,这样供水系统中有两台变频泵(一用一备),互为备用。控制变频泵的小为总用水量的40%为循环(A),当无用户用水时,变频泵的循环为A;当用户用水量A时,随着电机转速的改变,变频泵随用户水量的变化进行变频供水,此时回水管中循环回水为零。如果把变频泵的小设定得很小的话,管路中循环流速就很小,效率低,节能不显著;而若把变频泵的小设定得>总用水量的40%,流速就会很大,水质不能保证,因此把变频泵的小控制在总用水量的40%为宜。与方法a相比,在用水量
c.变频泵+循环泵供水
如图1中的(a)、(b)、(d)、(e),把其中的电磁阀去掉,制水量定为用水量的1.5倍,不论有无用户用水,循环回水都按制水量的1/3倍循环,变频泵则根据用户用水量的变化进行变频供水。与方法b相比,循环管路保持常循环状态,但制水设备增加,投资,占地较大,耗电多。
4 供水管材
几种常用的纯净水管材如下:
①不锈钢管。优点:抗高压能力强、抗腐蚀、抗锈能力强;缺点:造**。
②硬聚氯乙烯管(UPVC)。优点:抗锈、内壁光滑、水力条件好、易于粘合、**;缺点:粘接接口易老化、承高压能力较差。
③交联聚乙烯管(PEX)。优点:耐温性好、耐压,耐稳定性和持久性好;缺点:只能用金属连接件、**。
④铝塑复合管(PE—Al—PE,PEX—Al—PEX)。优点:保留了聚乙烯管和铝管的优点,又避免了各自缺点,易弯曲、耐高压、线性膨胀系数小;缺点:整体壁厚不均,影响管件连接质量,采用铜接头,价格较贵。
⑤聚丙烯管。优点:耐温、耐寒、耐高压,**;缺点:易龟裂,同等压力温度小,管壁厚。
综上可看出,各种管材各有优缺点,用户应从实际出发合理选用,但必须保证所选管材不会给纯净水带来管道的二次污染。从笔者做过的多个管道纯净水的管路设计来看,大部分运行良好,没有出现明显的给、回水不畅,“死水”等问题。
贵州全自动软化水设备主要由三部分组成,分别是树脂罐、盐箱和控制阀,每一部分具有特的功能,其中树脂罐是软化水设备进行工作的**部分,通过离子交换树脂有效去除原水中的钙离子、镁离子等,保证设备的出水水质达到行业软化标准。但是有的用户反映说同样的设备其处理过的水质质量却会有很大的不同,到底是哪些因素影响贵州全自动软化水设备的出水品质呢?
贵州全自动软化水设备出水不合格因素一般是因为吸盐水太慢,在正常的时间内,不能吸入足够的盐水,废水软管变形、折弯等引发的排废水不畅。吸盐管路上有泄漏点,使空气被吸入。
贵州全自动软化水设备备主要是通过设备内的树脂,吸附水中的钙镁离子。由于设备内树脂的特性,所以设备目前只能去除水中的水碱,也就是钙镁离子。
假如进入贵州全自动软化水设备的水质不好,如水中泥沙过多,泥沙会堵塞设备的交换柱内的滤网和过滤板,导致交换柱内部憋压,使滤网和滤板破损。又如进水水中藻类等悬浮物过多时,原水进入设备后,悬浮物滞留在树脂颗粒之间,会导致树脂内藻类滋生,影响设备出水品质。
给水TDS值与树脂层高度或树脂交换容量的比值过大。与新树脂初次试水相比,在用贵阳全自动软化水设备对给水TDS值要求较严格,当树脂层高度为1.5米,总硬度为13mmol/L,给水TDS值≧900mg/L时,确保软水硬度≤0.03mmol/L将会比较困难。
食堂用纯净水设备,贵州水处理设备
反渗透又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。对膜一侧的料液施加压力,当压力**过它的渗透压时,溶剂会逆着自然渗透的方向作反向渗透。从而在膜的低压侧得到透过的溶剂,即渗透液;高压侧得到浓缩的溶液,即浓缩液。若用反渗透处理海水,在膜的低压侧得到淡水,在高压侧得到卤水。
反渗透时,溶剂的渗透速率即液流能量N为:
N=Kh(Δp-Δπ)
式中Kh为水力渗透系数,它随温度升高稍有;Δp为膜两侧的静压差;Δπ为膜两侧溶液的渗透压差。稀溶液的渗透压π为:
π=iCRT
式中i为溶质分子电离生成的离子数;C为溶质的摩尔浓度;R为摩尔气体常数;T为温度。
反渗透通常使用非对称膜和复合膜。反渗透所用的设备,主要是中空纤维式或卷式的膜分离设备。
反渗透膜能截留水中的各种无机离子、胶体物质和大分子溶质,从而**净制的水。也可用于大分子**物溶液的预浓缩。由于反渗透过程简单,能耗低,近20年来得到迅速发展。现已大规模应用于海水和苦咸水(见卤水)淡化、锅炉用水软化和废水处理,并与离子交换结合制取高纯水,目前其应用范围正在扩大,已开始用于乳品、果汁的浓缩以及生化和生物制剂的分离和浓缩方面。
贵州鑫沣源环境科技有限公司。是一家集各种污水治理工程、固体废弃物处理工程、废气、自来水厂建设工程、环境综合治理工程(小河流、湖泊、水库、池塘等水体修复,中水回用工程、环评、科研、水资水保、土地复垦、环境工程设计,环保咨询、技术服务、环保产品研发、制造、销售以及环境工程施工、安装调试与运营管理于一体,具有规模的综合性环保企业。