二氧化碳是一种在常温下无色无味无臭的气体。化学式为CO₂,式量44.01,碳氧化物之一,俗名碳酸气,也称碳酸酐或碳酐。常温下是一种无色无味气体,密度比空气略大,溶于水(1体积H₂O可溶解1体积CO₂),并生成碳酸。固态二氧化碳俗称干冰,升华时可吸收大量热,因而用作制冷剂,如人工降雨,也常在舞美中用于制造烟雾(干冰升华吸热,液化空气中的水蒸气)。
呼吸系统的变化
1、一定浓度的PCO2是维持呼吸运动的重要生理性。CO2对呼吸的作用是通过两条途径实现的。①外周化学感受器:当PCO2升高,颈动脉体和主动脉体的外周化学感受器,使窦和主动脉传入冲动增加,作用到延髓呼吸使之兴奋,导致呼吸加深加快。②化学感受器:化学感受器位于延髓腹外侧浅表部位,对H+敏感。其周围的细胞外也是脑脊液,血-脑脊液屏障和血-脑屏障对H+和HCO3相对不通透,而CO2却很易通过。当血液中PCO2升高时,CO2通过上述屏障进入脑脊液,与其中的H2O结合成HCO3-,随即解离出H+以化学感受器。在通过一定的联系使延髓呼吸元兴奋,而增强呼吸。在PCO2对呼吸调节的两条途径中,化学感受器的途径是主要的。在一定的范围内,动脉血PCO2升高,可以使呼吸加强,但超过一定限度,则可导致呼吸抑制。
2、呼吸衰竭引起的低氧血症和高碳酸血症可进一步影响呼吸功能。PaO2 降低对颈动脉体初主动脉体化学感受器的,以及PaCO2,升高对延髓化学感受器的作用均可使呼吸加深加快,增加肺泡通气量,具有代偿意义。但PaO2,低于4kPa(30n1mHg)或PCO2高于10.6KPa(80mmHg)时,反而抑制呼吸,使呼吸减弱。呼吸衰竭病人的呼吸功能变化,还与许多原发病有关。如阻塞性通气障碍,由于阻塞部位不同,对表现为吸气性呼吸困难(上呼吸道不全阻塞)或呼气性呼吸困难(下呼吸道阻塞)肺顺应性降低所致的限制性通气不足,常出现浅而快呼吸;性呼吸衰竭时常表现浅慢呼吸,严重时可发生呼吸节律紊乱,出现潮式呼吸、延髓型呼吸、叹气样呼吸和抽泣样呼吸等。潮式呼吸较为常见。其特点是呼吸由浅慢逐渐变为深快,然后再逐渐变慢, 经过一短暂的呼吸停止后,又重复上述呼吸过程。此种呼吸见于颅内压升高、、严重缺氧及呼吸受损或抑制时。其机理一般认为是因呼吸兴奋性降低,此时对血中正常浓度的CO2 不能引起呼吸兴奋,故而发生呼吸暂停,随后血中CO2逐渐增多,达到足以兴奋呼吸的浓度时,又出现呼吸, CO2被逐渐排出,血中的CO2浓度随之下降,又出现呼吸暂停。如此反复交替,表现如潮,故称潮式呼吸。延髓型呼吸是性呼吸衰竭的晚期表现,呼吸的节律和幅度均不规则并有呼吸暂停, 呼吸频率少于12次/min,叹气样呼吸和抽泣样呼吸是临终呼吸表现,其特征是呼吸:稀深而不规则,出现张口吸气和呼吸肌活动加强,后呼吸减弱而停止.这两种呼吸表示呼吸处于深度抑制状态。
二氧化碳 (CO2)是植物进行光合作用制造有机物质的重要原料。大气中的CO2,通过植物的光合作用以有机碳的形态固定下来;同时,通过氧化过程,又将有机碳氧化,以CO2的形式不断地释放到大气中去。
热带森林每年每平方米面积上能固定1~2千克的CO2,中纬度农田则只能固定 0.2~0.4千克。海洋和森林是CO2的一个储存库,起着调节大气中CO2含量的作用。大气中CO2平均含量按容积比约占320ppm。地球上每年参与光合作用的CO2大约是大气中CO2含量的5%。其中多数为海洋植物所利用,陆地植物次之。
年、日变化 CO2浓度的日变化受作物群体密度大小、光合作用与呼吸作用强弱,以及太阳通量密度、风、温度等的影响。一般空气中 CO2浓度白天低夜间高。白天农田中的浓度可低到200ppm左右,夜间可达330ppm以上。白天,作物群体内CO2不足,靠与上层大气之间进行湍流交换和吸收土壤中所释放的CO2来补充。但是,通过扩散作用而进入农田作物层中的CO2的数量很少,在晴朗无风时农作物尤其感匮乏。CO2的浓度在一年中也有变化。夏季作物生长旺盛,CO2浓度逐渐下降,夏末达到低值,作物收获以后,浓度又逐渐回升,冬末春初达到高值。 补偿点和饱和点 CO2补偿点是在能得到满足的条件下,作物光合作用所消耗的CO2与呼吸作用所释放的CO2达到平衡时的CO2浓度。它在光强极低时,随着光强的提高而降低,随着温度的提高而上升。CO2的浓度在补偿点以上时,光合作用强度随浓度的增高而加大。CO2饱和点是在能得到满足的条件下,光合作用的强度达到大值时的CO2浓度。即CO2浓度超过饱和点以后,光合作用强度不再随CO2浓度的增加而加大。CO2补偿点和饱和点还与植物的种类有关,C3植物补偿点高,饱和点低;C4植物补偿点低,饱和点高。
参与光合作用的CO2来自三方面:叶子周围的空气、根部的吸收的和叶内组织的呼吸放出的。CO2自大气到达叶片光合作用的中心,须经过以下的扩散途径:大气→群体叶层→叶面→气孔→细胞间隙→细胞表面→光合作用中心。CO2输送的表达式如下: 式中Tc为 CO2的输送量, 「CO2】air是空气中 CO2浓度,「CO2】chl为叶绿体中的CO2浓度,rα为空气的阻抗,rS为气孔阻抗,rm为叶内组织阻抗。
调节途径 提高作物对CO2的吸收量,可采用增加空气中的湍流交换、减少 CO2在空气中的输送阻抗、增施有机肥料、通过水分调节气孔的张开度等方法。在密闭环境下施用CO2的方法,已开始用于农业生产,如在温室中用干冰、 CO2充气瓶以及燃烧丙烷、天然气、煤油补充CO2等。
二氧化碳培养箱是通过在培养箱箱体内模拟形成一个类似细胞/组织在生物体内的生长环境,培养箱要求稳定的温度(37°C)、稳定的CO2水平(5%)、恒定的酸碱度(pH值:7.2-7.4)、较高的相对饱和湿度(95%),来对细胞/组织进行体外培养的一种装置。
应用范围
其广泛应用于细胞、组织培养和某些微生物的培养,常见于细胞动力学研究、哺乳动物细胞分泌物的收集、各种物理、化学因素的致癌或毒理效应、抗原的研究和生产、培养杂交瘤细胞生产抗体、体外授精(IVF)、、组织工程、药物筛选等研究领域。
用户对二氧化碳培养箱都有两条基本的要求:
一是要求二氧化碳培养箱能够对温度、二氧化碳浓度和湿度提供稳定的控制,以便于其研究工作的进展;
二是要求二氧化碳培养箱能够对培养箱内的微生物污染进行有效的防范,并且能够定期消除污染,以保护研究成果,防止样品损失。
微处理控制系统是维持培养箱内温度、湿度和CO2 浓度稳态的操作系统。微处理控制系统和其它各种功能附件(如高低温自动调节和警报装置、CO2警报装置、密码保护设置等)的运用,使得二氧化碳培养箱的操作和控制都非常的简便。
如:LEEC 的PID 微处理器触摸屏控制系统,它能严格控制气体的浓度并将其损耗降至极低水平,以保证培养环境恒定不变,且能保证长期培养过程中箱内温度,并有液晶显示,图形化过程、干预事件记录等。此外报警系统也是不可少,它能让你及时知道培养箱出现的情况,并做出反应,从而大限度地降低了损失,保证实验的连续性。有些培养箱有声/光报警装置,温度变化达±0.5℃,或CO2 浓度变化达±5%时,即会自动报警;有些具有CO2 浓度异常报警显示功能;有些具有低压、断电报警功能。这些装置都是为了方便使用者,以减少繁琐枯燥的实验过程而设计的。
循环系统的变化
一定程度的PaO2降低和PaCO2升高,可外周化学感受器(颈动脉体和主动脉体),使心跳加快、心肌收缩力加强、血压升高;亦可反射性地引起交感兴奋,肾上腺髓质分泌增加,从而使心跳加快、心肌收缩力加强、血压升高,皮肤及腹腔内脏血管收缩,而心和脑血管扩张。这些变化具有代偿意义。一定程度的CO2潴留对外周小血管也有直接作用,使其扩张(肺、肾动脉除外),皮肤血管扩张可使肢体末梢温暖红润,伴有大汗;睑结膜和脑血管扩张充血。严重的缺氧和CO2潴留可直接抑制心血管和心脏活动,加重血管扩张,导致血压下降,心肌收缩力降低等不良后果。缺O2和CO2潴留均能引起肺动脉小血管收缩而增加肺循环阻力,导致肺动脉高压和增加右心负担。
呼吸衰竭常伴发心力衰竭,尤其是右心衰竭,其主要原因为肺动脉高压和心肌受损。发生机理与严重缺氧密切相关。高碳酸血症还可因酸中毒,加重对心脏的损害。
系统的变化--肺性脑病
1、CO2潴留使脑脊液氢离子浓度增加,影响脑细胞代谢,降低脑细胞兴奋性,抑制皮质活动;随着CO2的增加,对皮质下层加强,引起皮质兴奋;若CO2继续升高,皮质下层受抑制,使处于麻醉状态。在出现麻醉前的患者,往往有、精神兴奋、烦躁不安的先兆兴奋。
2、肺性脑病是指由于呼吸衰竭而引起的以系统功能障碍为主要表现的综合征。上,早期由于兴奋过程增强,患者表现有记忆力减退、、头晕、烦躁不安、幻觉、精神错乱等。当PaCO2达到10.6kPa(80mmHg)以上时,大脑皮质发生抑制,患者逐渐转为表情淡漠。嗜睡、意识不清、昏迷等。肺性脑病早期多为功能性障碍,出现脑血管扩张、充血。晚期可有脑水肿,脑等严重病变。肺性脑病是由缺氧、高碳酸血症、酸中毒、脑内微血栓形成等综合作用的结果。
3、高碳酸血症和酸中毒PaCO2升高不但抑制系统功能,而且还可直接作用于脑血管,当PaCO2超过正常水平1.33kPa (10mmHg)时脑血管扩张,脑血流量可增加50%。PaCO2过高,可使脑血管明显扩张充血,同时壁通透性增高,引起血管源性脑水肿,颅内压升高和视水肿。严重时还可导致脑疝形成。CO2蓄积对的影响还可通过改变脑脊液及脑组织的pH值而起作用的。脑脊液的缓冲能力较血液为低,正常脑脊液的pH偏低(7.33~7.40),而PCO2却比动脉血高1.0kPa(7.5mmHg)左右,所以当PaCO2 升高时,脑脊液中的CO2也增多,pH值更低宁血液,于是可加重脑细胞损害,如增强磷脂酶活性,使结构损伤,通透性升高;溶酶体膜稳定性降低,可释出各种水解酶,分解组织成分,促使脑细胞水肿、变性和坏死。
优点介绍
1.焊接成本低。其成本只有埋弧焊、焊条电弧焊的40~50%。
2.生产效率高。其生产率是焊条电弧焊的1~4倍。
3.操作简便。明弧,对工件厚度不限,可进行全位置焊接而且可以向下焊接。
4.焊缝抗裂性能高。焊缝低氢且含氮量也较少。
5.焊后变形较小。角变形为千分之五,不平度只有千分之三。
6.焊接飞溅小。当采用碳合金焊丝或药芯焊丝,或在CO2中加入Ar,都可以降低焊接飞溅。
焊接烟尘防治
焊接烟尘成分及特点
焊接烟尘是由金属及非金属物质在过热条件下产生的蒸气经氧化和冷凝而形成的。因此电焊烟尘的化学成分,取决于焊接材料(焊丝、焊条、焊剂等)和被焊接材料成分及其蒸发的难易。不同成分的焊接材料和被焊接材料,在施焊时将产生不同成分的焊接烟尘。
焊接烟尘的特点有:
(1) 焊接烟尘粒子小,烟尘呈碎片状,粒径为1µm左右。 (2) 焊接烟尘的粘性大。
(3) 焊接烟尘的温度较高。在排风管道和滤芯内,空气温度为60~80℃。
(4) 焊接过程的发尘量较大。一般来说,1个焊工操作1d所产生的烟尘量约60~150g。几种焊接(切割)方法施焊时(切割时)每分钟的发尘量和熔化每千克焊接材料的发尘量
东莞市灏达焊接材料店从事多种气体的制备、营销和现场服务,能根据客户需求进体产品的研究开发,自2006年诞生以来,拥有雄厚的专业技术力量和物流服务,具有十多年气体销售经验和广泛的销售市场。现已形成以工业特种气体、大宗混合气体、标准气体、各种气体管道工程等四大类产品和训练有素的员工队伍,积累了一定的气体制造和供气服务经验。 灏达经销的化学工业气体包括各种纯度和规格,如:、氧气、氮气、氩气、氦气、、氨气、干冰、等;特种气体包括各种纯度和规格,如:六氟化硫、四氟化碳、、五氟化磷、五氟化锑、四氟化硫、四氟盐、三氟甲烷、三氟化氮、磷烷、、、五氟化碘、氖气、氟气、气、、P10氩甲烷混合气等;气体管道服务对象,化工企业、电子半导体行业、太阳能光伏、学校、科研机构、海关、检验检疫中心等等;还可以按客户的要求配制各种混合气,如:高纯空气、氟氮混合气、氧氦混合气、硅烷加氢混合气、氩保气、氧氩混合气等。 我们秉承“一切为了用户”的宗旨,只要用户的需要,都要做到使用户满意。对于有特殊要求的气体配制、钢瓶阀门或接口加工、气体管道等按装服务,我们都有一些长期合作的专业厂家和团队为之服务。销售产品广泛应用于电子、不锈钢、光纤光缆、太阳能电池、有色金属、化工行业、香精香料、医、玻璃及电力行业。客户只要一个电话、一份传真(订单),您需要的货物就会按照您的要求,如期而至送到您的手上! 灏达所销售商品,质量保证价格合理,具备各种生产和销售资质。服务上乘,交货及时,做到快速反应、及时回访、技术咨询、操作培训、客户投诉处理,为客户提供安全可靠的生产运行保证。